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Abstract

By using integral techniques commonly applied to the averaged Eu-
ler equations used in fluid mechanics and turbulence, and treating the
stars and dust separately, we show that there is no need for ‘Dark Mat-
ter’ or ‘Alternative Gravity’ to explain ‘anomalous’ galactic rotational
velocities. They are not anomalous.

The integral momentum balance equation including source terms re-
duces to:

zm(r)

[
V 2
ϕ (r) − 1

2
r
dV 2

r (r)

dr

]
= 4πG

∫ r

0

⟨ρbar(r′)⟩r′dr′,

where r is the radial coordinate, Vϕ(r) is the averaged azimuthal velocity,
Vr(r) is the averaged radial velocity, G is the gravitational constant, and
⟨ρbar(r)⟩ is the ‘two-dimensional’ baryonic density of stars and/or dust
that is usually measured. We ‘define’ zm(r) to be ‘the galaxy momentum
thickness’.

The mass source terms and coupling between stars and dust have been
included in the V 2

r -contribution by using the mass conservation equation.
Since the integral on the right-hand side is asymptotic to the total mass
in the galaxy, say Mtot, clearly the left-hand-side must also approach a
constant at large radius.

We also carry out an equilibrium similarity analysis which shows that
there are two possible similarity regimes: one in which zm is constant and
Vϕ is asymptotically constant; and the other in which zm grows linearly
with r and the velocities are power laws in r.

*This version differs from earlier posted versions in that two new appendices have been
added: The previous Appendix B (similarity theory) is now Appendix C. The new Appendix
B now discusses alternative derivations of our main equation using classical Bessel functions.
And Appendix A 5 (Angular momentum) has been added. Other changes are mostly cosmetic
or to fix typos. We expect to add in the near future a short section on M31 (Andromeda) and
one showing that spherically symmetrical galaxies behave differently.
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We consider data from the Triangulum Galaxy (M33) and the Milky
Way, both of which exhibit the star similarity solutions. Our rotational
velocities computed from the integral equation above correspond well to
both the shape and magnitude of the measurements, even at large radius.
Both constant and power law regions are observed. The ‘mean stream-
lines’ computed from the velocity data for the Milky Way are virtually
identical to log spirals, consistent with an equilibrium similarity analysis
of the same equations.

“At every crossroads on the path that leads to the future,
tradition has placed 10,000 men to guard the past.” Maurice
Maeterlinck

2



Contents

1 Introduction 8
1.1 Some recent studies . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 What are the ‘galactic’ equations that have been used . . . . . . 8
1.3 A fluid mechanics model for galaxies . . . . . . . . . . . . . . . . 10
1.4 Galaxy ‘streamlines’ . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Re-examining the ‘Thin Disk’ Equations 11
2.1 Mass distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Mass conservation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Momentum Conservation . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Gauss’ Gravitational Law for Galaxies . . . . . . . . . . . . . . . 15
2.5 Combining Gauss and Momentum Equations . . . . . . . . . . . 16
2.6 How to handle multiple phases? . . . . . . . . . . . . . . . . . . . 17

3 An Equilibrium Similarity Theory for Galaxies 18

4 Combining both approaches 20

5 Evaluation of theory using Corbelli et al. [9] data for the Tri-
angulum Galaxy 22

6 Evaluation of theory using data of Eilers et al. [11] for the Milky
Way 23

7 Summary and Conclusions 26

A The equations of Newton-Gauss fluid mechanics 29
A.1 Reynolds-averaged momentum equation . . . . . . . . . . . . . . 29
A.2 Mass conservation . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.3 Component Momentum conservation equations . . . . . . . . . . 31
A.4 Integrated momentum equations . . . . . . . . . . . . . . . . . . 32
A.5 Angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.6 Gauss’ gravitational law . . . . . . . . . . . . . . . . . . . . . . . 35

B Alternative derivation of momentum and gravitational law in-
tegrals 37
B.1 Fourier decomposition of gravitational potential and density . . 37
B.2 From Poisson (Gauss’ Law) to Bessel . . . . . . . . . . . . . . . . 37
B.3 The fast way using properties of Fourier methods . . . . . . . . 38
B.4 Complete solution using modified Bessel functions . . . . . . . . 39
B.5 Combining Bessel and the momentum equations . . . . . . . . . 40
B.6 The hazards of solving the hard way . . . . . . . . . . . . . . . . 40
B.7 Summary of this appendix . . . . . . . . . . . . . . . . . . . . . . 41

3



C An equilibrium similarity solution for galaxies 43
C.1 Similarity of the r-momentum equation . . . . . . . . . . . . . . 43
C.2 Similarity of the continuity equation . . . . . . . . . . . . . . . . 45
C.3 Similarity of Gauss’ gravitational law . . . . . . . . . . . . . . . . 46
C.4 The integrated density, ρ . . . . . . . . . . . . . . . . . . . . . . 48
C.5 The ϕ-dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.6 A complete similarity solution . . . . . . . . . . . . . . . . . . . . 49
C.7 Collecting all terms using similarity relations . . . . . . . . . . . 50

D Interrelation of integral parameters 54

List of Figures

1 Galaxy M33 showing the visible matter, the measured azimuthal
velocities and the theoretical calculation using the Gauss-Newton
equations. The difference between ‘expected’ and observations is
usually attributed to dark matter’ (Data from [8], Figure from
[40].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 Three galaxies from McGaugh et al. [31]. Their caption is below
the figure. The black symbols the measured azimuthal veloc-
ities, and the solid lines are the velocities calculated from the
observed mass and the Gauss-Newton equations. The difference
is presumed to be due to either ‘Dark Matter’ or the need for
alternative gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Data for Milky Way from Eilers et al.[11] for Vϕ, Vr and the cir-
cular velocity calculated from Jeans equation along with various
solutions to their versions of the galactic equations. Their caption
is below figure. The large error bars are typical for astronomical
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Data for circular velocity for Milky Way from Eilers et al.[11]
along with various solutions to Jeans equation. Their caption is
below the figure. Note that none of the computations come close
to the measurements without including dark matter. The large
error bars are typical for astronomical data and computations. . 63

5 Figure showing the streamlines computed from the velocities of
Eilers et al. [12] (reproduced as Figure 3 here) and super-imposed
on the Milky Way image of [39]. . . . . . . . . . . . . . . . . . . 64

6 Figure showing the velocity streamlines using data from Figure 2
of Eilers et al. [11] (reproduced here as Figure 3) along with spiral
produced using constant values of the velocity ratio, Vϕ/Vr = 6.5.
The latter is a true log spiral, ϕs(r) − ϕs(0) = 6.5 ln r/ro. Note
that this plot does not include the core region of the previous
plot since these data go out to much larger radius (r = 25 kpc). . 65

7 Plot of Vϕ/Vr versus r for data of [11] showing that it appears to
be asymptotically constant at Vϕ/Vr ≈ 6.5. . . . . . . . . . . . . 66

4



8 Profiles of Vϕ(r) and Vr(r) (same as in Figure 2) but also plotting
Vϕ(r)/6.5 on top of Vr(r). This is not a fit to Vr, but a predic-
tion of the similarity theory which does not seem to have been
previously noticed. . . . . . . . . . . . . . . . . . . . . . . . . . 66

9 Plots showing how the running mass, Mg(r), for M33 computed
form the measured ⟨ρstars⟩ and ⟨ρgas⟩ increases with radius, r.
Data of Corbelli et al. [9]. . . . . . . . . . . . . . . . . . . . . . . 67

10 The momentum thickness, zm, for M33 computed using Vϕ data
and the star density data, ⟨ρstars⟩, of Corbelli et al. [9] in equa-
tion 34. The data have been computed using the measured Vϕ and
Mg shown in Figure 9 and computed from the measured ⟨ρ⟩stars
only. The straight (red) line indicates the low r similarity regime
for which zm ∝ r; the other similarity regime corresponds to zm
asymptotically constant. The solid black line is an interpolation
consistent with both fits, zm = 2.75(1− exp(−r/1.8)). . . . . . . 67

11 Figure showing how the Vϕ data for M33 of Corbelli et al. [9] can
be reconstructed from equation 34 using a constant zm = 2.75
(dashed red line) and also using the composite fit zm = 2.75(1−
exp(−r/1.8)) (solid blue line) shown in Figure 10. . . . . . . . . 68

12 Log log plot of the Vϕ data for M33 of Corbelli et al. [9] showing
two regions: a r0.4 for low values of r, and a constant asymptote
for high r values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

13 Plot showing the ratio of ⟨ρstars⟩ to ⟨ρgas⟩ versus radius for M33
using data of Corbelli et al. [9] . . . . . . . . . . . . . . . . . . . 69

14 Figure showing the momentum thickness, zm, for the Milky Way
computed using the data of Eilers et al. [11] in equation 34. The
solid (blue) disks are computed using Vϕ only. The jagged line
shows zm computed using Vc, the ‘circular velocity’ of [11]. The
red line is a linear fit: zm = 3.6 + 0.4 r. . . . . . . . . . . . . . . . 69

15 Figure for Milky Way showing the measured velocity of Eilers et
al. [11] for Vϕ along with the the velocity back-calculated using
the same mass distribution and the linear fit to zm. . . . . . . . . 70

16 Figure showing log-log plots of Vϕ and Vr for the Milky Way along
with lines identifying possible power law regions. The dashed
lines correspond to slopes of +1 and -1. The solid lines have
slope 0.08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

17 Figure showing linear-linear plots of Vϕ and Vr for the Milky Way
along with lines identifying high r similarity region in both. The
green line is the power law of the preceding figure. Also shown
are linear fits to Vϕ (blue) and Vr (orange) for r > 5. . . . . . . . 71

18 Plot showing how mass distribution (black line) in Milky Way
corresponds to similarity region in Vϕ (blue diamonds) and zm
(red squares). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5



Nomenclature
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ρbar density of baryonic matter
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ρ density integrated over ϕ only, equation 206
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Φth top-hat potential used for gradient only, equation 20

⟨Φ⟩ gravitational potential integrated over z and averaged over ϕ.

Φ̂ Fourier series coefficient of Φs, equation 169
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A similarity coeff. dependent on upstream conditions denoted by *, equation 183

B similarity coeff. dependent on upstream conditions denoted by *, equation 184
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D similarity coeff. dependent on upstream conditions denoted by *, equation 186

E similarity coeff. dependent on upstream conditions denoted by *, equation 187

fρ density similarity profile function of η only, defined by equation 37

f⃗ gravitational force vector defined by equation 2

Fr radial velocity similarity profile function of η only, defined by equation 39

g gravitation potential similarity profile function of η only, defined by equation 41

G Universal gravitational constant

Im Modified Bessel function of Second Kind

K similarity coeff. dependent on upstream conditions denoted by *, equation 42

Km Modified Bessel function of Second Kind

Ls = Schwarzschild length scale for galazy, 2GMtot/c
2

m Fourier component index in equations 169 and 170

M⊙ Mass of the sun

Mg Radial profile of baryonic mass of galaxy; equation 11

Mtot Total baryonic mass of galaxy, equation 12

r radial coordinate

rs streamline radial position

t time, except when used as subscript with zt where it is a density top-hat thickness

Tij instantaneous stress tensor,for continuum of interest

Vϕ azimuthal velocity

Vϕth azimuthal top-hat velocity defined by equation 17

Vsϕ similarity scale velocity defined by equation 38

vi ith-component of instantaneous velocity vector for continuum of interest

Vr radial velocity

Vrth radial top-hat velocity defined by equation 19

Vsr similarity scale velocity defined by equation 39

Vz velocity normal to plane of galaxy
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z spatial coordinate perpendicular to plane of galaxy

zm momentum thickness defined by equation 26. Note also equation 32.

zr parameter in empirical fit to variation of ⟨ρbar(r)⟩ of equations 56-59
zt galaxy top-hat thickness defined by equation 204
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1 Introduction

One of the great challenges for astronomers and physicists for the past 100
years has been the alleged existence of Dark Matter. The problem was first
noticed by Zwicky[45], Oort [33] and with far more data Rubin et al. [35]. They
noticed there did not seem to be enough matter in the galaxies they studied to
support the gravitationally-dominated rotational motions they observed, and
suggested the difference was due to Dark Matter. Dark Matter was presumed
to be matter which did not admit light, but acted gravitationally like mass.
Interest has expanded greatly since the Hubble telescope, and attention has
expanded to include thousands of galaxies (e.g., McGaugh and coworkers [31]).

1.1 Some recent studies

Figure 1 shows a typical result for the galaxy labeled M33, the Triangulum
Galaxy.1 The difference between the velocity data labeled ‘from starlight’ and
‘from 21 cm hydrogen’ and that labeled ‘Expected from visible disk’ clearly
present a problem. Since the velocities are much less than the speed of light,
relativistic effects are negligible. So Newton’s third law and Gauss gravitational
law should apply. But apparently not – at least not without introducing matter
we have not seen (Dark Matter). Or alternatively, changing the gravitational
laws altogether (so-called Modified Gravity) so they behave differently at large
distance.

While Dark Matter is surely a possible hypothesis, it is quite disconcerting
that after nearly 100 years we have not found any. In fact the primary reason to
infer it all seems to be the inability to balance the dynamical galaxy equations.
We argue below that at least for galaxies, neither Dark Matter nor Modified
Gravity are necessary. It is the solutions to equations from which the need has
been inferred which are incorrect.

1.2 What are the ‘galactic’ equations that have been used

There are a number of approaches which have been applied, but all depend in
one form or another on Gauss’ gravitational law given by:

∇2Φbar = 4πGρbar, (1)

where ∇2 is the Laplacian operator, Φbar is the gravitational force potential,
G is the universal gravitational constant, and ρbar is the density of the observ-
able (or baryonic) matter. This Poisson equation constitutes the Gauss-Newton
gravitational law. All researchers solve this equation (numerically or using em-
pirical fits to the density) for all the matter they can infer from their telescopes.
And they then calculate Φbar(x⃗) for all space of interest.(Note that since the

1It was pointed out to us by one of the co-authors (E. Corbelli) of the data [7] that the
axes of this very popular and much cited figure of unknown origin are improperly labeled. We
use the correct data in Section 5 below.
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galaxies are presumed to be in steady motion, only steady-state analysis is per-
formed.) Then they calculate the gravitational force at any location by taking
the negative of the gradient of Φbar; i.e.

f⃗(x⃗) = −∇Φbar. (2)

At this point approaches can differ slightly. Most (e.g., [31]) directly equate
this force to compute the expected acceleration for motion in concentric circles,
say V 2

ϕ /r, where Vϕ is the azimuthal velocity and r is the distance from the

center of rotation measured in cylindrical coordinates2. Thus they expect:

Vϕ
2

r
= − dΦbar

dr
. (3)

Figure 2 (used by permission) is from McGaugh et al. [31] shows plots of Vϕ

for three galaxies, along with the velocity inferred from the equations above us-
ing both two- and three-dimensional calculations and a nominal assumed galaxy
thickness. It is the difference that is attributed to missing matter, or to alterna-
tive gravity. The lower part of the figure shows a remarkable correlation between
the left-hand-side of equation 3 (referred to as gobs) plotted versus the right-
hand-side (referred to as gbar) computed from equation 1 using an estimate of
the density distribution.

An alternative approach incorporating both azimuthal and radial velocities
was used by Eilers et al. [11] for the Milky Way. Equation 3 was replaced by
Jeans Equation [26, 4] in the form:

∂ν⟨V 2
r ⟩

∂r
+

∂ν⟨VrVz⟩
∂z

+ ν

(
⟨V 2

r ⟩ − ⟨V 2
ϕ ⟩

r
+

∂Φ

∂r

)
= 0, (4)

where ν(r) is the star density (corresponding to the ⟨ρ(r)⟩ which we will use
later.) By neglecting the second term they solve this to obtain the square of a
‘circular velocity’, V 2

c , given by:

V 2
c (r) = ⟨V 2

ϕ ⟩ − ⟨V 2
r ⟩
(
1 +

ln ν

ln r
+

ln⟨V 2
r ⟩

ln r

)
= r

∂Φ

∂r

∣∣∣∣
z=0

. (5)

The radial profile of Vc(r) computed from their measurements of the Milky
Way is compared to the r ∂Φ/∂r|0 computed from solving Laplace’s equation,
equation 1.

Our Figure 3 (Figure 1 of [11] reproduced here by permission) shows their
velocity component measurements in the plane of the galaxy and their com-
puted Vc. Our Figure 4 reproduces their Figure 3 which compares their circular
velocities with those computed several ways from equation 5 using various as-
sumed mass distributions including ‘dark matter’. For the baryonic matter they
simply assumed ν ∝ exp−r/ro where ro = 3 kpc.

2Note that in this paper we do NOT conform to the astrophysicists convention of using
capital R for tbe distance from the center in cylindrical variables. Since we work only in
cylindrical polar coordinates there should be no confusion.
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Clearly none of the aforementioned efforts (or hundreds of others) succeed
without invoking additional significant invisible or ‘Dark Matter’ to make up
the short-fall. This is a common feature of almost all similar attempts for any
galaxy – hence the label ‘Galaxy Rotational Velocity Problem’.

1.3 A fluid mechanics model for galaxies

In this paper we propose to use a fluid mechanics and continuum model, in-
stead of the planetary and virial-based models reviewed briefly above. These
are derived in detail in Appendix A. We use averaged continuum equations of
momentum and mass conservation proposed originally by Euler (v. [2]). But
unlike the usual application in gases or liquids, we use them in this context like
a multi-phase flow where the ‘fluid particles’ are averages over many stars or
clumps of dust. We assume that the stars and dust (or gas) can be treated sepa-
rately. But since stars explode and new ones are formed we allow the equations
for both dust and star equations to be coupled. We will focus entirely on the
stars, and view the dust as both a source and a sink of mass and momentum.

As noted in Appendix A, we will ignore the higher order terms and ‘Reynolds-
type stresses’ that arise when any averaging is applied to non-linear equations.
Thus the equations and solutions we derive should be viewed in the same vein
as the oft-used geostrophic approximations that have been so successful in de-
scribing the general features of ocean and atmospheric circulations. But might
fail in a particular case because of the terms that have been neglected.

1.4 Galaxy ‘streamlines’

A simple and early indicator of whether such an approach might succeed is
to use the multi-component measurements of Eilers et al. [11] reproduced in
Figure 3 above to produce mean streamlines of the fluid motion we believe is
present.

A streamline in fluid mechanics is defined as a line everywhere tangent to the
instantaneous velocity vector; i.e., if dx⃗s is a line element and v⃗ is the velocity
vector, then the streamline is given by dx⃗s× v⃗ = 0. The concept of a streamline
using the mean flow (or averaged velocities) is more problematical, since the flow
may never follow it. But sometimes it is useful for providing an overall picture,
and this is one of those times. We can use the data of Figure 3 to compute the
streamlines for the mean velocities as follows:

rs dϕs

Vϕ(rs)
=

drs
Vr(rs)

, (6)

where the subscript ‘s’ denotes the streamline coordinate. This can be inte-
grated numerically using the data of [11] for Vr and Vϕ. The result is plotted
on Figure 5 superimposed on the picture of the Milky Way assembled from
radiation data [39]. Note that we have computed both positive and negative
legs to get both arms of the spiral. The overlay of the velocity results with the
picture is quite spectacular. Hogg et al. [22] (in a related paper to [11]) show a
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predominance of older stars at smaller radii, with newer stars being created at
the outside. This would be consistent with an inward transport. In the same
figure they include arrows showing the spatial distribution of velocities from
which they computed the statistics.

Figure 6 shows two plots of streamlines: one (solid lines) using the same
velocity data above but out to r = 25 kpc; the other (dashed lines) a true
log-spiral given by:

r dϕs = 6.5 dr, (7)

or ϕs − ϕo = 6.5 ln r/ro. The picture overlay plot is limited by the picture to
radial values of about r = 10 kpc, but this second plot goes out to 25 kpc.

Figure 7 shows a plot of Vϕ/Vr using the same velocity data. It does appear
that the data asymptotes to a constant, Vϕ/Vr ≈ 6.5, hence the value of 6.5
used in Figure 6. This is a prediction of the similarity theory summarized in
Section 3 (and derived in detail in Appendix C) which does not seem to have
been noticed before.

Figure 8 shows radial profiles of the Eilers et al. [11] data for Vϕ(r) and Vr(r)
(same as in Figure 3) but also plotting Vϕ(r)/6.5 on top of Vr(r). This is not a
fit to Vr, but even so is in reasonable agreement beyond r = 5 kpc. This is also
a prediction of the similarity theory of Section 3 (and Appendix C) and does
not seem to have been noticed before.

Interestingly, for the data plotted in the picture overlay plot of Figure 5,
the velocity ratio is clearly still developing, but the velocity data still overlay
the picture reasonably well. For values of r > 10, however, the log spiral curve
in Figure 6 is almost indistinguishable from the streamlines computed from
the velocity data. While none of these figures are ‘proof’ that the Milky Way is
moving as a fluid continuum, the hypothesis surely merits serious consideration.
We do that below and in the rest of this paper.

Part I: New Theory for Galaxies

In Part I we summarize the redevelopment of the basic equations. The details
are largely in Appendices A and B. For the main body of the paper we restrict
ourselves to statistically steady averaged motions, so all ∂/∂t-terms of averages
will be neglected. But in Appendix A we show how they could have been
included.

2 Re-examining the ‘Thin Disk’ Equations

2.1 Mass distribution

The galaxy mass distribution as a function of radius r, say Mg(r), is given by:

Mg(r) =

∫ r

0

dr′ r′
∫ 2π

0

dϕ

∫ ∞

−∞
dz ρbar(r

′, ϕ, z) (8)

11



where ρbar(r
′, ϕ, z) is the density of baryonic matter (stars and dust) only ex-

pressed in cylindrical coordinates. The radial coordinate is r, the azimuthal
coordinate, ϕ, and coordinate normal to the plane of the galaxy, z. Dark mat-
ter is not considered in the analysis below, nor is it needed to explain the galactic
measurements considered.

For the remainder of this paper we define the symbols ⟨ ⟩ to mean integrating
the quantity enclosed over z and averaging it over ϕ; i.e.,

⟨( )⟩ = 1

2π

∫ 2π

0

dϕ

∫ ∞

−∞
dz ( ), (9)

where we invoke the convention that everything to the right of the integral sign
and differential is to be integrated over that variable.

We define the two-dimensional density, ⟨ρ(r)⟩, to be the integral of ρbar(r, ϕ, z)
across the galaxy in the z-direction and averaged azimuthally; i.e.,

⟨ρ(r)⟩ = 1

2π

∫ 2π

0

dϕ

∫ ∞

−∞
dz ρbar(r, ϕ, z), (10)

So the mass contained inside radius r, say Mg(r), is given by:

Mg(r) = 2π

∫ r

0

dr′ r′ ⟨ρ(r′)⟩. (11)

It follows that the total mass in the galaxy, say Mtot, is simply:

Mtot = 2π

∫ ∞

0

dr′ r′ ⟨ρ(r′)⟩. (12)

2.2 Mass conservation

In Appendix A2 we show that mass conservation in our ‘thin disk’ galaxy reduces
to equations 73 rewritten here as:

r⟨ρ(r)Vr(r)⟩ = σL(r), (13)

where we define, σL(r) by:

σL(r) =

∫ r

0

⟨σ⟩r′dr′, (14)

and ⟨σ⟩ is the net mass source integrated over z and averaged over ϕ. Note that
σL(r) and ⟨rρVr⟩ have dimensions of mass per unit length per unit time, the
latter because it has been integrated over z.

For the star mass and momentum balance equation, if the mass of stars
being produced from dust is greater than the mass of dust being produced by
them exploding, then both σ and σL are positive. Equation 13 and 14 are quite
interesting and have profound implications for the relation between the radial
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velocity, Vr, and the density. Since that discussion is tangential to our purpose
here, we have included it as a part of Appendix A.2.

All of these source terms will be incorporated into the momentum equations
below. Not surprisingly, they will be shown to only affect the radial velocity
component, but in a very important way. We are not aware that the effect
of these mass sources terms on the momentum equation has been previously
noticed.

In parallel to the implications of mass conservation on the relation between
density and radial velocity profiles, the assumed finiteness of total angular mo-
mentum in a galaxy places constraints on the interrelation of the profiles of
azimuthal velocity and density. We defer this discussion to Appendix A.5, but
note that whether the galaxy is flaring out or not is crucial in determining how
fast the density falls and what asymptote the azimuthal velocity attains.

2.3 Momentum Conservation

There is a long history of treating ‘thin shear layer” problems in Fluid Me-
chanics and especially turbulence (c. f. [17].) Basically the approach shows that
entrainment is driven by weak pressure gradient resulting from the square of
the cross-layer velocity, V 2

z , and the resulting streamwise pressure gradient is
small (and usually can be neglected). The details of this are in Appendix A.3
where we show how to reduce Euler’s equations for a fluid to the radial ‘galaxy
momentum equation’, equation 83, given as:

∂(ρ Vr)

∂t
+

1

r

∂(rρV 2
r )

∂r
+

1

r

∂(ρVϕVr)

∂ϕ
+

∂(ρVrVz)

∂z
− ρ

V 2
ϕ

r

=
∂

∂r

(
ρV 2

z

)
− ρ

∂Φ

∂r
+ σVr. (15)

Note that the last term on the right-hand-side, σVr, appears since we combined
the momentum equation with the mass conservation times velocity in order to
produce terms integrable over all the variables. It resembles closely the Jean’s
equation (e.g.used by [11, 3] but includes the ∂V 2

z /∂r which represents the
second-order (and oft-neglected) pressure term. This is the classical thin-shear
layer result commonly appearing in turbulent shear flows.

This particular form of Euler’s equation can easily be integrated across the
galactic disk, z and averaged azimuthally, ϕ. In Appendix A.4, by integrating
over z and averaging over ϕ the equation above, we derived equation 84 as:

∂⟨ρ Vr⟩
∂t

+
1

r

∂r⟨ρV 2
r ⟩

∂r
− ∂

∂r
⟨ρV 2

z ⟩ −
⟨ρV 2

ϕ ⟩
r

= −⟨ρ ∂Φ

∂r
⟩+ ⟨σVr⟩. (16)

Note that every term is now enclosed in angle brackets (meaning it has been
integrated over z and averaged over ϕ). Also note that the ∂/∂ϕ and ∂/∂z-terms
have vanished identically, the former because of the assumed periodicity and the
latter because the variables ρ and Vr are presumed zero above and below the
galactic disk.
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Now we make the following top-hat definitions:

⟨ρV 2
ϕ ⟩ = ⟨ρ⟩V 2

ϕth, (17)

⟨ρV 2
r ⟩ = ⟨ρ⟩V 2

rth, (18)

⟨ρV 2
z ⟩ = ⟨ρ⟩V 2

zth, (19)

⟨ρ ∂Φ

∂r
⟩ = ⟨ρ⟩dΦth

dr
, (20)

where ‘th’ means that we have replaced a z-profile by a single value that makes
the definition correct.

Now let’s consider what happens if we include the mass conservation equa-
tions at the end of Section 2.2. First let’s examine the second term on the left-
hand-side of equation 16; i.e., using our previous definition, ⟨rρV 2

r ⟩ = ⟨rρ⟩V 2
rth ≈

⟨rρVr⟩Vrth, then we can write:

1

r

∂

∂r

(
r⟨ρV 2

r ⟩
)

≈ 1

r

∂

∂r
(r⟨ρVr⟩Vrth)

≈ Vrth

r

d

dr
(r⟨ρVr⟩) + ⟨ρVr⟩

d

dr
Vrth

≈ Vrth⟨σ⟩+
σL

r

d

dr
Vrth, (21)

where we have substituted using equations 13 and 14.
If we further assume that ⟨σVr⟩ ≈ ⟨σ⟩Vr, substitution yields:

σL

r

d

dr
Vrth − d

dr
⟨ρV 2

z ⟩ −
⟨ρV 2

ϕ ⟩
r

= −⟨ρ ∂Φ

∂r
⟩. (22)

Note that we already assumed statistical stationarity for the continuity relation
so we drop the time derivative here as well.

Substituting these into equation 22 and dividing by ⟨ρ⟩ and rearranging
yields:

dΦth

dr
=

V 2
ϕth

r
− 1

⟨ρ⟩

{
σL

r

dVrth

dr
+

d

dr

(
⟨ρ⟩V 2

zth

)}
=

V 2
ϕth

r
− dV 2

zth

dr
− V 2

zth

d

dr
ln⟨ρ⟩ −

{
σL

r⟨ρ⟩
dVrth

dr

}
. (23)

Note that the Vr-derivatives have completely disappeared except for the source-
dependent term. This is a direct consequence of using the integrated and
azimuthally-averaged mass conservation equation.

Note that we will have a problem with the ln⟨ρ⟩ term if we use ⟨ρ⟩ ∝
exp (−r/R) since it will not go to zero like the other terms with increasing r.
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But we have noted in Section 2.2 that this is not a good approximation except
for purely circular motions, and it creates anomalies if used here (and probably
by others as well). Nonetheless, as we shall see below, V 2

z << V 2
r << V 2

ϕ , so

the V 2
z -terms can be neglected even with an exponential density.

A power law density profile (or any combination of power-laws) creates no
problems at all. We note (see Appendix A.5), however, that if the total angular
momentum in the galaxy is finite, this places the additional constraint that
⟨ρ(r)Vϕ(r)⟩ must go to zero faster than 1/r3.

2.4 Gauss’ Gravitational Law for Galaxies

Since the velocities are small compared to the speed of light, Gauss’ gravitational
law applies. In cylindrical polar coordinates it is given by:[

1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂ϕ2
+

∂2

∂z2

]
Φ(r, ϕ, z) = 4πGρ(r, ϕ, z), (24)

where G is the universal gravitational constant. Like the momentum equation
above, we deal with the averages of this equation in the main body of the text.

In Appendix A.6 we show this can be integrated over z and averaged over ϕ
to obtain:

1

r

d

dr

(
r⟨ d
dr

Φ⟩
)

= 4πG ⟨ρ(r)⟩, (25)

since the other two terms integrate to zero. Note that all terms are now enclosed
in angle brackets, ⟨ ⟩. This reduction of Gauss’ gravitational law to a single
dimension appears to be a major departure from previous analyses.

Now we define our ‘momentum thickness’, zm(r), by:

zm(r)
dΦth(r)

dr
=

1

2π

∫ 2π

0

dϕ

∫ ∞

−∞
dz

∂Φ(r, ϕ, z)

∂r
. (26)

So our gravitational law reduces to:

1

r

d

dr

[
r

(
zm

d

dr
Φth

)]
= 4πG ⟨ρ(r)⟩. (27)

Appendix B provides a detailed presentation of an alternative derivation
of equation 25 using a clever approach to classical Fourier analysis and Bessel
functions. The result is the same. The conditions for existence of the Fourier
transforms are less general than the hypotheses made in this section, but the
results are identical. Appendix B also shows a specific analytical solution (v.
Fitzpatrick [37]) and uses it to show why previous calculations of galaxy gravi-
tational potentials may have been in error.
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2.5 Combining Gauss and Momentum Equations

Substituting from equation 23 yields:

1

r

d

dr

[
r

(
zm

{
V 2
ϕth

r
− dV 2

zth

dr
− V 2

zth

d

dr
ln⟨ρ⟩ −

{
σL

r⟨ρ⟩
dVrth

dr

}})]
= 4πG ⟨ρ(r)⟩.

(28)
(Note that in addition to averaging the equations themselves across ϕ and in-
tegrating across z, this substitution appears to be the other crucial point of our
departure from the traditional analysis. Our approach is a natural consequence
of treating galaxies as fluid mechanics problems where the velocities and densi-
ties are themselves field properties.)

Clearing the r terms in equation 28:

1

r

d

dr

(
zm

[
V 2
ϕth − r

dV 2
zth

dr
− rV 2

zth

d

dr
ln⟨ρ⟩ − σL

⟨ρ⟩
dVrth

dr

])
= 4πG ⟨ρ(r)⟩. (29)

Note that σL(r) is given by equation 14; so reversing the sides yields:

σL = r⟨ρ(r)Vr(r)⟩ ≈ r⟨ρ(r)⟩Vrth(r). (30)

So if we know ⟨ρ⟩ and Vrth, we can determine σL.
Alternatively we can substitute equation 30 into equation 29 to obtain:

1

r

d

dr

(
zm

[
V 2
ϕth − 1

2
r
dV 2

rth

dr
− r

dV 2
zth

dr
− rV 2

zth

d

dr
ln⟨ρ⟩

])
= 4πG ⟨ρ(r)⟩. (31)

This form is particularly nice since it includes the source terms implicitly in
the dV 2

rth/dr-term. Note that if dV 2
rth/dr < 0, dV 2

rth/dr < 0 and d⟨ρ⟩/dr < 0
for large r, these extra terms act to decrease zmV 2

ϕth for any given density
distribution on the right-hand-side.

Equation 31 can be integrated directly to obtain zmV 2
ϕth as:

zm

[
V 2
ϕth − 1

2
r
dV 2

rth

dr
− r

dV 2
zth

dr
− rV 2

zth

d

dr
ln⟨ρ⟩

]
= 4πG

∫ r

0

⟨ρ(r′)⟩r′dr′. (32)

We shall argue below that the terms involving the transverse velocity, Vz are
negligible. So to an excellent approximation, equation 32 reduces to:

zm

[
V 2
ϕth − 1

2
r
dV 2

rth

dr

]
≈ 4πG

∫ r

0

⟨ρ(r′)⟩r′dr′ = 2GMg(r), (33)

where we have used the definition of Mg(r) in equation 11.
Moreover we shall see that away from the core (of spiral galaxies at least)

V 2
r << V 2

ϕ so this further reduces to:

zm V 2
ϕth ≈ 4πG

∫ r

0

⟨ρ(r′)⟩r′dr′ = 2GMr(r). (34)
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A few things are obvious. Since the density on the right-hand-side can never be
negative the left-hand can only increase or be asymptotically constant.

For very large values of r the integral is nearly constant so our expression
reduces to:

zm V 2
ϕth → 4πG

∫ ∞

0

⟨ρ(r′)⟩r′dr′ = 2GMtot. (35)

Before leaving this section we note what happens if we divide both sides of
equation 35 by the square of the speed of light, say c2:

V 2
ϕ

c2
=

(
2GMtot/c

2
)

zm
=

Ls

zm
. (36)

The characteristic length scale, Ls = 2GMtot/c
2, is usually referred to as the

Schwarzschild ‘radius’, but here clearly has nothing to do with a ‘radius’. Its
appearance in this context is a bit surprising to say the least, especially in
combination with the ratio V 2

ϕ /c
2 which is clearly relativistic and in a problem

where we started in the non-relativistic limit.
Finally note that we could have followed others and defined an equivalent

‘circular velocity’, say V 2
c using the bracketed terms on the left-hand-side of

any of equations 32 - 35 above. In the application to the data below, the extra
terms are negligible at least away from the center. The ln⟨ρ⟩ term is particularly
problematical if used with exponential densities, since it causes the result to blow
up with increasing r.

2.6 How to handle multiple phases?

One way to use the results derived in the preceding sections is to simply sum
the densities of all the type of mass present (e.g. gas, stars, etc.), and compute
a zm for the mixture. Another alternative is to treat each phase separately by
assuming for example that the gas and stars overlap each other, but interact
only very weakly or at least rarely. In the absence of evidence to the contrary,
both gas and stars could be assumed to move with the same averaged velocity.
We shall show such results for M33. Obviously this will give a smaller value of
zm(r) for each material considered than adding their densities together to get a
single value.

Clearly the more detailed the information available, the more powerful the
equations derived herein become. For example if the gas velocity profile is differ-
ent than that of the stars, this will very much make their top-hat representatives
different. For the most part in astronomical measurements, unlike most prob-
lems in Fluid Mechanics, there are no profiles, only integrated values. So we
consider only the simplest cases below, and leave it for others to explore this
treasure-trove of opportunities.
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3 An Equilibrium Similarity Theory for Galax-
ies

The kind of results demonstrated above in Section 1.3 for the Milky Way have
special significance to turbulence researchers; specifically:

� The streamline coincidence with what we see in the pictures (Figure 5).

� The success of a simple log spiral to account for the measured velocities
away from the center (Figure 6).

� The possible asymptotic constancy of the velocity ratio (see Figure 7).

All of these suggest that we are looking at a turbulent shear flow and should
seek an similarity solution of some type.

The most successful in terms of accounting for a wide-variety of flows and
initial or upstream conditions has been equilibrium similarity. Equilibrium
similarity is different from classical similarity in that the solutions can depend
uniquely on initial conditions, unlike the so-called ‘universal solutions’ which
dominated turbulence theories until the 1980’s (and still dominate many texts).
Basically ‘equilibrium similarity’ hypothesizes a single length scale, say δ, for
which δ evolves in time or space. These solutions emerge after an initial ad-
justment region, and thereafter all the relevant terms in the equations stay in
balance with each other (or until something makes them change). This gener-
ally requires that there is more than one velocity scale which differ by factors
of the growth rate of the length scale.

Originally proposed by one of us (WKG [13], See also [15, 17]) the ideas have
been applied to a wide variety of simple shear flows, homogeneous flows, and
even by us to the universe [20]. Examples of applications to experiments include
the two-dimensional wake of Johansson et al. [27] which showed how one solution
can evolve downstream into another as new terms grow into the equation while
others die out; or Shiri et al. [36] who explained how the rotation dies out faster
than velocity in rotating jets. Wosnik and Dufresne [44] applied both ideas to
turbulent swirling wakes, and Danaila et al. [10] extended it to variable viscosity
jets. Moser et al. [32] had similar success explaining numerically generated
wakes. One of the best examples is due to Rogers [34] who found 12 different
solutions for a forced wake, each corresponding to how he forced the wake and
which terms he turned on. Applications to wall-bounded flows include George
et al. [18], Castillo and George [5], Castillo et al. [6], Wosnik et al. [43] and
Hultmark [23]. All of these solutions have the common feature that it is the
growth rate of the length scale that reflects the initial conditions and determines
all the dependent variables. The velocity moments typically take longer than
the length scale to reach their asymptotic state. Often (but not always) for
turbulent free shear flows, this length scale grows linearly.

Implementation of an equilibrium similarity analysis is extremely tedious
and requires seemingly endless applications of the chain-rule. Therefore we have
chosen to include the complete development as Appendix C, and only summarize
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the beginning and conclusions here. Basically, we seek an equilibrium similarity
solution of the Euler-based averaged equations of Appendix A of the form:

ρ(r, z, ϕ) = ρs(r, ϕ) fρ(η), (37)

Vϕ(r, z, ϕ) = Vsϕ(r, ϕ)Fϕ(η), (38)

Vr(r, z, ϕ) = Vsr(r, ϕ)Fr(η), (39)

Vz(r, z, ϕ) = Vsz(r, ϕ)Fz(η), (40)

Φ(r, z, ϕ) = Φs(r, ϕ) g(η), (41)

where η is defined to be:

η =
z

δ(r)
. (42)

We have put all of the r and ϕ-dependence into the scale functions denoted by
subscript ‘s’, and all of the z dependence has been scaled by an r-dependent
length scale δ(r). It will turn out that our zm(r) defined in Section 2.4 above
is proportional to δ(r). Clearly the functions of η represent the z-dependent
profiles which fan out (or in) if δ varies with r.

Note that up to this point we have simply been transforming the governing
equations into different variables. Now we substitute these transformed depen-
dent variables into the basic equations and ask whether there are conditions
under which the governing equations, including Gauss’ gravitational law, re-
duce to ordinary differential equations of η = z/δ(z) only. The “equilibrium
similarity’ part comes in when we demand that all the r and ϕ-dependent coef-
ficients have the same r and ϕ-dependence. Physically this means that all the
internal adjustments of the equations have been completed, and thereafter all
terms evolve together. So this is making a physical statement about how the
flow reaches an asymptotic state – if it does. Note that if there are no such
solutions we won’t find any. But if we do, history suggests that unlike the
classical solutions, these we will find in nature.

Now we need to define the coefficients of our similarity relations which in
principle could be galaxy specific; i.e., different for each one depending on its
history and initial conditions. Since these are unknown, we denote this possible
dependence by *. From all the sections of Appendix C taken together, the
following conditions are necessary for an equilibrium similarity solution:
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[
V 2
sϕ

V 2
sr

]
= A(∗), (43)[

∂

∂ ln r
ln
{
rρsV

2
sr)
}]

= B(∗), (44)[
1

ρsV 2
sr

∂

∂ϕ
{ρs Vsϕ Vsr}

]
= C(∗), (45)[

Vsz

Vsr

]
= D(∗)

[
dδ

dr

]
, (46)[

Φs

V 2
sϕ

]
= E(∗), (47)

δ(r) = K(∗) r, (48)

where ∗ denotes a possible dependence on unknown source conditions which
are specific to each particular galaxy. In other words, this is not a universal
solution, but each galaxy could have different values depending on its origin
and history. Also note that the r independent variable in these solutions does
not in general correspond to the actual position of the center of the galaxy, so a
virtual origin might be needed because of the development distance needed to
reach the equilibrium similarity state.

We note that we have determined in Appendix C that indeed conditions for
an equilibrium similarity solution exist. And like all previous such solutions it
is described by a single length scale, δ(r), and at least two velocity scales which
differ by a factor of dδ/dr from each other (e.g., equations 43 and 46).

4 Combining both approaches

We consider separately the two similarity conditions identified above: δ ∝ r
(K(∗) ̸= 0) and δ = constant (K(∗) = 0). The first will be seen to correspond
approximately to the Milky Way, the second to the Triangumlum Galaxy.

First we note that the similarity constraints of the preceding section imply
that all the terms in equation 16 are proportional to V 2

sϕ/r, so we do not need

to consider them separately, only the leading term, V 2
ϕ ; i.e.,

1

r

d

dr

[
δ(r) V 2

ϕth(r)
]
≈ 4πG [δ(r) ρs(r)] = 4πG ⟨ρbar(r)⟩. (49)

(In fact, away from the core region we shall see the contributions of the neglected
terms are only about 3 %.)

We identify zm(r) of the integral equation analysis with the δ(r) of our
similarity theory, and define:

δ(r) = zm(r). (50)
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Also the similarity results require that:

Φs(r) ∝ Vsϕ(r)
2 = α(∗) ρs(r) δ(r)2 = α(∗) ⟨ρ(r)⟩ δ(r), (51)

where we have assumed Φs(r) Vsϕ(r) and ρs(r) to now have been averaged over
ϕ. We define, α(∗) to be the galaxy dependent coefficient of proportionality
between the velocity squared and density times δ-squared. (Note that α has
dimensions of velocity-squared divided by density times length-squared.) So we
can use these functional forms hereafter interchangeably.

We can now rewrite equation 49 in two ways. Either as an equation for the
three-dimensional density scale, ρs:

α

r

d

dr

[
δ(r)3 ρs(r)

]
≈ 4πG [δ(r) ρs(r)]. (52)

Or as an equation for the two-dimensional density integrated across the layer,
⟨ρ(r)⟩:

α

r

d

dr

[
δ(r)2 ⟨ρ(r)⟩

]
≈ 4πG ⟨ρ(r)⟩. (53)

Alternatively, we can rewrite equation 49 as an equation for the velocity
squared; i.e.,

1

r

d

dr

[
δ(r) V 2

ϕth

]
≈ 4πG ⟨ρ(r)⟩ = 4πGα

Vsϕ(r)
2

δ(r)
. (54)

All three of these can be solved analytically if δ is known.
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Part II: Comparison with Astronomical Data

In Part II we consider recent data and compare it to the theory above for two
galaxies: the Triangulum Galaxy (M33 shown in Figure 1 and the Milky Way
(shown schematically in Figure 5).

5 Evaluation of theory using Corbelli et al. [9]
data for the Triangulum Galaxy

We consider M33 first both because it seems the simplest and it provides the
most detailed and tabulated results for the quantities we need, namely az-
imuthally averaged and integrated values for ⟨ρ⟩ and Vϕth (or something very
close to it). These have been presented in numerous references by Corbelli and
co-workers ([8, 9, 30]). We focus on the 2014 version since the data were so
nicely tabulated. Unfortunately the radial velocity Vr is not provided. There
appears to be evidence (v. [24]), however, that M33 is indeed a log-spiral. If
so, our similarity theory above suggests that Vr ∝ Vϕ, at least in any similarity
regime. We shall see that there is a least one such region, and perhaps two.

Figure 9 shows how the running mass, Mg(r), defined by equation 11 for
stars and gas separately increases with radius. Both star and gas masses rise
rapidly near the center but quickly flatten out. The total star mass in the galaxy
obtained by integration using equation 12 is 4.6×109 M⊙. The total gas present
similarly obtained is 1.6× 109 M⊙.

Figure 10 shows the values of the momentum thickness, zm(r), computed
using equation 34 for stars only using the measured values of Vϕ(r) and the
Mg(r) distributions above. The straight (red) line indicates the low r similarity
regime for which zm ∝ r; the other similarity regime corresponds to zm asymp-
totically constant. The solid black line is an interpolation consistent with both
fits, zm = 2.75(1− exp(−r/1.8)).

The gas momentum thickness (not shown) is very similar to the thicknesses
suggested by [9], and is about a factor of three smaller than the star values.
It has been observed that the gas is often in a thinner layer than the stars, so
that is consistent. It has also been observed in many terrestrial turbulent flows
that momentum thicknesses for shear layers tend to be considerably larger than
density profiles. And it has been noted that top-hat estimates tend to produce
larger values than more realistic profiles (e. g. Gaussian). Appendix C shows
why this is true for a simple Gaussian profile. In the absence of detailed cross-
galaxy profiles, we have no reason to believe these momentum thicknesses do not
correspond to what we see – especially given the alternative is ‘Dark matter’
which we cannot see at all, or changing the laws of physics (e. g. alternative
gravity).

Figure 11 shows how the Vϕ data for M33 of Corbelli et al. [9] can be
reconstructed from equation 34 using a constant value of zm = 2.75 (dashed
red line) and also the using composite fit zm = 2.75(1− exp(−r/1.8)) shown in
Figure 10. The composite fit is excellent, but not unexpected given the fit to
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zm(r) in the preceding figure using the same data. It would have been nice to
have had data for Vr and some actual z-profiles so the top-hat profile values for
velocities and zm could have been confirmed directly from their definitions.

Figure 12 is a log-log plot of Vϕ(r) showing two possible similarity regimes:
one for small values of r with slope 0.4 corresponding to the region in which
zm ∝ r; and the other of constant velocity corresponding to the region for which
zm is asymptotically constant. Both are consistent with the similarity theory of
Section 3 and described in detail in Appendix C.

It is not entirely clear to us (at least) what is going on here to cause the
transition from one equilibrium similarity state to another, but here are two
possibilities. One possibility is that the mass integral is reaching its asymptote,
so clearly the tails of the distribution become important. A second possibility is
suggested by Figure 13 which shows a plot of the density ratio, ⟨ρ⟩stars/⟨ρ⟩gas.
If star formation is related to the relative concentrations as suggested by Misiri-
otis et al. [25], then clearly when they are nearly equal is where one might
expect to find a transition — and we do. Our equations have used the coupling
of Vr and sources to eliminate sources from appearing explicitly. So both sim-
ilarity regimes could be active regions of different star production/dissipation
mechanisms, and the transition region where it switches.

6 Evaluation of theory using data of Eilers et al.
[11] for the Milky Way

The Milky Way is a particularly interesting case since we know a lot about it, in
part because we live in it. But being within a galaxy is not necessarily the best
place to study it. We have leaned heavily on the excellent and comprehensive
review by Bland-Hawthorne and Gerhart [3] and the careful exposition by Eilers
et al. [11] and Hogg et al. [22] of their data. We do not attempt to repeat their
historical summaries here, but instead focus only on the data they provided and
the parameters required. Note that we used only their component velocities,
except as noted in Figure 14.

We have already seen from the mean streamline plots of Figures 5 and 6
using the data of [11] that the Milky Way mean flow is a log-spiral. This was
deduced from the similarity theory presented in Section 3 above (and Appendix
B), and in particular the requirement that the ratio of Vϕ/Vr be constant in any
similarity regime. Figure 7 showed how this ratio varied with r. And Figure 8
showed the Vϕ data divided by 6.5 and laid on top the of Vr-data. This does not
seem to have been previously noticed, nor has its implications for the log spiral
behavior. This should give considerable confidence as to both the quality of the
data and the theory. It remains to see if the dynamical equations are satisfied,
particularly equation 34.

Here are our assumed parameters, mostly from the afore-mentioned refer-
ences:
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Mtot = 5× 1010 M⊙, (55)

⟨ρ(r)⟩ = ⟨ρo⟩ e−r/zr , (56)

2GMtot = 4.26× 105 kpc(km/s)
2
, (57)

zr = 3 kpc = 9, 3× 1019 m, (58)

⟨ρo⟩ =
Mtot

2πz2r
= 8.8× 108 M⊙/kpc

2 = 1.8× 100 kg/m
2
, (59)

⟨ρo⟩G = 1.2× 10−10 m/s
2
, (60)

whereM⊙ is the mass of the sun. Mtot is the value for the stellar baryonic matter
suggested by Bland-Hawthorne/Gerhart [3], and the value of zr is that chosen
by Eilers et al.[11]. We have chosen ⟨ρo⟩ to produce the value of Mtot when
substituted into equation 12. We note the following (for the non-astronomers
reading this paper):

1 kpc = 3.09× 1019 m, (61)

1M⊙ = 2× 1030 kg, (62)

G = 6.7× 10−11 m3/(kg s2). (63)

For this particular choice of density (used by [11]), the defining integral for
Mg(r), equation 11 can be integrated analytically to yield:

Mg(r)

Mtot
= 1 − (1 + r/zr) exp(−r/zr). (64)

Figure 14 shows the galaxy momentum thickness, zm(r), versus r computed
using the the Vϕ data from Figure 2 of [11], the mass distribution of equation 64
and equation 34. The zero intercept is about 3.6 kpc; zm then rises linearly
thereafter to about 14 kpc at r = 25 kpc. These seem quite a bit higher than
expected, but note the difference near r = 0 from the M33 data in the previous
section. For M33, zm(r) drops quickly to zm(0) ≈ 0 as r → 0. But zm for the
Milky Way seems to be asymptotic to a constant value of about 3.6, and this
offset is maintained throughout as the galaxy fans out. So perhaps we should
have confined our attention to r > 5 kpc as did [11, 22] by only evaluating the
integrals above this value. We noted above for M33 that these are ‘top-hat’
values computed from a velocity profile that is probably closer to a Gaussian,
and that this could account for a factor of about 2.5. (Appendix C shows that a
top-hat thickness over-estimates a Gaussian width parameter by about

√
2π or

about 2.5.) Also these are ‘momentum’ thicknesses, which on terrestrial flows
tend to be larger than their density counterparts.

Finally note that the limiting values for large radius of zm V 2
ϕ are directly

proportional to the total galactic mass, Mtot in equation 35. Although in the
spirit of ‘dark matter’, a suggestion of ‘negative matter’ to reduce zm while
conserving momentum is of course ridiculous. So if zm is too large, it means
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that the estimate of the total star mass is TOO LARGE – the exact
opposite of previous inferences that there was not enough mass to
support the galaxy gravitationally. Typical error estimates for baryonic
mass are ±30% , although [3] suggest ±20% for the estimate we used from
them. So the zm estimates could be substantially smaller (but also larger).

The best linear fit is zm = 3.6 + 0.4 r where length is in kpc. Also shown
on the plot are the values of zm using the values tabulated by Eilers et al.
of their ‘circular’ velocity. The difference is primarily due to the misbehavior
of their ln⟨ρ⟩ term if substituted for with an exponential. By incorporating
mass conservation and neglecting V 2

z we avoid this problem. Even so, in spite
of the fact different equations were used and their very different origins, the
two different methodologies give remarkably close estimates of the momentum
thickness zm(r). Both lead to the conclusion that this galaxy must fan out to
conserve momentum.

The fanning out for increasing values is consistent with the observations [3]
(Section 5). Note that by definition, these values of zm(r) reproduce exactly
the azimuthal velocity profile using the assumed density profile. This is demon-
strated in Figure 16 which uses the linear fit to zm and the same Mg(r) in
equation 34 to produce the velocity, Vϕ. The fanning out of the galaxy with
the nearly linear increase in zm(r) with radius is of course the reason for the
decreasing values for Vϕ with radius. This is surely not an independent veri-
fication, but re-assuring nonetheless. Only by producing actual profiles of Vϕ

which can be integrated across the layer can we have absolute confirmation of
the approach. Clearly no dark matter is required to produce the ob-
served velocities if the galaxy is fanning out with increasing radius as
suggested from our analysis and the data.

The similarity solution requires that Vϕ and Vr be either constant or power
laws. Figure 16 shows a log-log plot of Vϕ and Vr. The former clearly could
be a power law, while for Vr it is acceptable. Figure 17 shows the same data
on a linear-linear plot along with various fits to different regions. Eilers et
al. [11] fitted a straight line to their circular velocity between 5 < r < 20
(kpc). We show a similar straight line here on Vϕ along with the power-law fit
(Vϕ = 264 r−0.08). Both are acceptable.

Figure 18 plots Vϕ(r), Mg(r) and zm(r) together, and shows how the various
regions for the range of zm and the power law region of Vϕ correspond to each
other. They clearly overlap, and in a region where the mass integral is continuing
to increase. It is important to remember (as we noted for M33 above) that in our
formulation, we have accounted for the relation of Vr and any mass source terms
– and they canceled each other out. So this could be a region of substantial star
production/dissipation.

There is one more piece of information we can glean from the review paper
of [3]. Since we are in our galaxy they were able actually to directly measure the
z-dependent density profile for the Milky Way at our location near r = 7.8 kpc.
By fitting a Gaussian profile, ρ(z) ∝ exp(−z2/2σ2

z) to the plot we deduce that
σz ≈ 0.33. Using equation 208 from Appendix D, the corresponding top-hat
thickness is:
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zm =
√
2π σz ≈ 0.83 kpc. (65)

So the factor of approximately 2.5 between our momentum thickness value, zm,
and previous estimates of galaxy thickness using densities seems quite reason-
able. It is also important to note that whatever the actual factor is, it is nearly
independent of radius.

It might be argued that we have simply replaced Dark Matter by another
unknown quantity, zm(r). The difference is that zm(r) is not dark; we can quite
literally see that galaxies have a thickness. And it has also been noted that they
fan out, although with the exception of [9] to our knowledge this does not seem
to have been considered dynamically important. Moreover our equations can
be checked directly if z-profiles ever become available.

Finally, given our method of analysis since we actually compute zm(r) from
the measurements, the velocity profiles are fitted exactly; so the motivating
dilemma for Dark Matter for the past century disappears entirely. Moreover,
if we could measure actual (instead of integrated) velocity profiles, we could
calculate everything from them. This is the main reason integrated length scales
have a long (and at times tortured) history in fluid mechanics (see for example
the review of [14]).

7 Summary and Conclusions

Over the past 100 years and especially recently, the idea of Dark Matter has been
introduced to explain a varietly of astronomical anomalies. In this paper we have
shown that there is another alternative to Dark Matter to explain the rotational
velocity of galaxies – at least some of them, and maybe all. We began in the
same place as most previous studies, with Newtonian dynamics in cylindrical
coordinates and the Gauss gravitational law. We imagined an isolated galaxy
to be a continuum. and its ‘fluid particles’ to be comprised of thousands of stars
plus gas. We departed from conventional approaches (for the last 100 years) by
integrating the equations (in this case the Reynolds-averaged Euler equations)
over the galaxy thickness. We consider this a “thin-disk” approximation, but
there is no reason for it to be. We also considered only velocities and densities
which had been integrated over the galaxy thickness, since that corresponded
to most of the data. And we considered only statistically stationary flows in
time, although that assumption could be relaxed as well.

Our primary results are given by equations 32 – 35. Equation 34 is repeated
here:

zm

[
V 2
ϕth − 1

2
r
dV 2

rth

dr

]
≈ 4πG

∫ r

0

⟨ρ(r′)⟩r′dr′ = 2GMg(r). (66)

The neglected terms, at least away from the core, involve only the cross-disk
velocity, V 2

z , which is presumed much smaller (by a factor of dδ/dr from the
similarity theory) than the radial component, V 2

r , which is in turn much smaller
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than V 2
ϕ , by the same factor. We also showed that any production or dissipation

of star matter is accounted for in the Vr(r)-term and its coupling to the mass
conservation equation. These inclusions of the mass-conservation terms and V 2

z

terms and their integration across the galactic disk are the main reason for the
difference from the commonly used Jeans equation.

So to leading order these equations are simply a balance between the square
of the azimuthal velocity times the momentum thickness, zm V 2

ϕ , and 2GMg(r)
where Mg is the running mass integral. The most important difference is the
appearance of the momentum thickness, zm(r), on the left-hand side of all the
equations. It is no small curiosity that for very large values of r, dividing
both sides of equation 35 by the speed of light squared leads to the following
relationship:

V 2
ϕ

c2
≈ Rs

zm
, (67)

where Rs = 2GMtot/c
2 is the Schwarschild radius defined using the total mass

of the galaxy. There is probably no more significance to this than that it is
dictated by dimensional consideration alone. But it is intriguing nonetheless,
especially since the entire analysis is non-relativistic.

These equations seem to provide an excellent descriptions of both the Trian-
gulum (M33) galaxy and the Milky Way without needing to invoke Dark
Matter. And both galaxies are consistent with inferences from the equilibrium
similarity solution described in detail in Appendix B. If sufficient profile infor-
mation were available to perform the integrals defining the top-hat parameters
directly, the theory could be better quantified. In fact, only after this is done
could the theory be considered verified, a clear challenge to the astronomers.

Even though we began with Newton’s and Gauss’ laws (in continuum form),
our resulting equations are quite different from the Kepler planetary-type laws
that have been previously applied. Exactly why our approach gives different
answers is not easily obvious, but we did try to make a ‘guess’ in Appendix
B.6. Instead of solving a two- or three-dimensional Poisson’ equation using
an inferred or measured three-dimensional density, we avoided this problem en-
tirely by integrating Gauss’ equation across the layer and averaging azimuthally
first. Then we substituted the momentum equation into it. The complications
and difficulties of integrating Poisson’s equation (or ANY equation involving a
Laplacian) in an infinite environment were well-known to the generation of fluid
mechanicians and physicists trained before computers were employed – mean-
ing us3. We knew well the theorems of Potential Theory about sensitivity to
boundary conditions, and that in fact the determination of the solution instan-
taneously everywhere by them. Perhaps these lessons have been forgotten. Or
maybe we were just lucky to have followed a different path – the one advan-
tage of coming from a different background. (Interestingly the final result of
equation 34 was our first guess back in 2018.)

3We are both near 80 and were educated before computers dominated science education.
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Integral equations have a long history – at least in fluid mechanics and
turbulence. Both of us have been involved for five decades in unraveling and
challenging measurements (and computations) of turbulent flows which were
alleged to NOT satisfy the basic equations. Whether boundary layers or free
shear flows, whether rotating or buoyancy-dominated, whether in the lab or in
the atmosphere, in every case the problem was NOT because the data were
wrong or that new physics were required (in spite of claims to the contrary). It
was ALWAYS because the equations being used were wrong or being used in-
correctly, or the experiment was not what it was believed to be (e.g.,[16]). From
our perspective, that seems to be the case here: the astronomical experiments
are marvelous – to we non-astronomers, incredible really. But the Kepler-like
equations being used to explain them appear to have been both too simplistic
and used incorrectly. And for sure the solutions of the Gauss gravitational laws
could not have been correct.

We conclude this paper by remarking that while we have challenged the need
for dark matter (at least for these two galaxies), there is much that needs to
be done. This should enthuse the galaxy astronomical community. Freed from
the tyranny of dark matter, there is much that should be investigated to fill in
some of the gaps and possibilities we have identified above. Even the origins
of galaxies can be re-examined using unsteady generalizations of our approach.
This seems to be of special interest now given the recent discoveries by the James
Webb Space Telescope. We do note in this context our as yet unpublished work
on the expansion of the universe which suggests the universe is much older than
previously believed (15.4 billion years versus 13.8 billion years)[20].
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Appendices

These Appendices contain most of the details of the analysis presented in the
main body of the paper. For the most part the analysis is straight-forward,
but at times tedious. Since few (even in Fluid Mechanics) aside from our own
students seem to have been able to carry it out in other problems, we have tried
to be complete and show each step. Portions will be nearly identical to the main
body text, but this was necessary to maintain coherence.

A The equations of Newton-Gauss fluid mechan-
ics

We hypothesize that we can treat the typical galaxy using ‘continuum’ mechan-
ics. For the gas phase, this is obvious. For the stars the continuum hypothesis
can be justified as follows. A characteristic length scale for gradients of averaged
quantities near the center of a typical galaxy (like the Milky Way) is about 1
kpc. The Milky Way galaxy has about 107 stars in this region, and the core
region has a volume of approximately 3 kpc3 (3 kpc radius, 0.1 kpc thick). So
about 3× 106 stars per characteristic length, surely enough to treat it as a con-
tinuum. The number of stars per unit volume drops with increasing radius, but
the length scales for changes with distance increases as well.

A.1 Reynolds-averaged momentum equation

But since the stars are not moving uniformly, even these ‘continuum’ motions
are random, so we need to ‘Reynolds-average’ them. Reynolds-averaging in
this context means imagining a finite number, say N , of statistically identical
galaxies and averaging them in the limit as N → ∞. In practice, this ensemble
average is replaced by exploiting homogeneities in the spatial coordinates. So the
appropriate equations are the averaged Euler’s equations for a variable density
flow dominated by gravity:

ρ
Dvi
Dt

=
∂Tij

∂xj
− ρ

∂Φ

∂xj
, (68)

where ρ is the mass density, vi is the instantaneous velocity, Tij is the stress
tensor, and Φ is the gravitational potential. The overline in this section denotes
ensemble averages of the fluctuating quantities. Generally, the stress are neg-
ligible compared to the averaged velocity fluctuations (the so-called Reynolds
stresses), except for the pressure which must be considered separately. But even
the mechanical pressure it overwhelmed by the normal stresses from the fluc-
tuating velocities. If we restrict to galaxies in near statistical equilibrium, we
can eliminate the ∂/∂t of averaged quantities, but almost never the advective
contribution, vj∂/∂xj ,
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A.2 Mass conservation

There is also an equation for mass conservation (often called the continuity
equation) which with the same assumptions reduces to:

∂ρ

∂t
+

1

r

∂

∂r
(rρVr) +

1

r

∂

∂ϕ
(ρVϕ) +

∂

∂z
(ρVz) = σ, (69)

where σ represents sources or sinks per unit volume (like a blackhole in this
context) or a distribution (from star creation for example if dust and stars are
considered separately).

Integrating from −∞ < z < ∞ and averaging over ϕ yields:

1

2π

∫ 2π

0

dϕ

∫ ∞

−∞
dz

{
∂

∂t
ρ+

1

r

∂

∂r
(rρVr) +

1

r

∂

∂ϕ
(ρVϕ) +

∂

∂z
(ρVz) − σ

}
= 0.

(70)
Or equivalently, if (as in the main body of the paper) we use ⟨ ⟩ to represent
the combined integration over z and averaging over ϕ:

∂

∂t
r⟨ρ⟩+ ∂

∂r
[r⟨ρVr⟩] +

∂

∂ϕ
⟨ρVϕ⟩+

[
lim
z→∞

(rρVz) − lim
z→−∞

(rρVz)

]
− r⟨σ⟩ = 0,

(71)
since the third and fourth terms inside the curly brackets are perfect differentials.
The term ρVz represents any entrainment and is zero only if it vanishes as
|z| → ∞; which we assume it does. If the galaxy is statistically stationary and
azimuthally homogeneous or periodic by assumption, the first and third terms
on the left-hand-side are also identically zero leaving:

d

dr
[r⟨ρ(r)Vr(r)⟩] − r⟨σ⟩ = 0. (72)

We can integrate this directly to obtain:

r⟨ρ(r)Vr(r)⟩ = σL(r), (73)

where we define, σL(r) by:

σL(r) =

∫ r

0

⟨σ⟩r′dr′. (74)

Note that σL(r) and ⟨rρVr⟩ have dimensions of mass per unit time, the latter
because it has been integrated over z.

Equation 73 is quite interesting and has profound implications. We consider
three cases below.

� Case 1: No sources or sinks anywhere. σL = 0.

This case is very interesting for what it implies about the flow. The only
way to satisfy equation 73 for non-zero density and all r is for Vr to be
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identically zero. This means flow in concentric circles – like planetary
orbits. Alternatively, this condition could be satisfied by a ring vortex
which could blow itself along.

� Case 2: A blackhole at the center: σL = −Ṁbh δ(r) where Ṁbh = constant
for a steady motion. Presumably Ṁbh > 0 (meaning the blackhole is
growing) and represents a sink, so Vr < 0 as well.

If we substitute the two-dimensional delta function into equation 73 and
integrate, for all r > 0 we obtain:

r ⟨ρ(r)Vr(r)⟩ = −Ṁbh. (75)

If Ṁbh > 0 the continuous phase is losing mass. Note this is dimensionally
correct since ⟨ ⟩ implies integration over z and averaging over ϕ, so there
is an implicit z-thickness. If ⟨ρ(r)Vr(r)⟩ ≈ ⟨ρ(r)⟩ Vr(r), then for all r > 0:

r ⟨ρ(r)⟩Vr(r) = −Ṁbh = constant. (76)

Now this result is interesting as well, since we know the right-hand side
must be non-zero for the galaxy to spiral. But it is also especially inter-
esting for what it implies about the frequent choice of ⟨ρ⟩ ∝ exp(−r/R)
where R is a galaxy disk width parameter. The velocity would have to
blow up exponentially with increasing radius, i.e., Vr ∝ −1/r×exp(+r/R).
So the positive exponent swamps the 1/r for large r. Clearly this can not
be physical.

� Case 3: A distribution along r but no blackhole at center.

In this case we must deal with the full integral for what ever distribution
of σL is present. We shall see that this term seems to present the only
possibility of making the velocity slowly decrease for constant thickness
(like we see in the Milky Way).

� Case 4: Both a blackhole at the center and a distribution along r.

This is probably what we need for the Milky Way since it both spirals and
the asymptotic velocity drops off slowly.

A.3 Component Momentum conservation equations

The most convenient form of the momentum equation is obtained by combining
Euler’s equation with continuity. For the radial momentum this is done as
follows:
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ρ

{
∂ Vr

∂t
+ Vr

∂Vr

∂r
+

Vϕ

r

∂Vr

∂ϕ
+ Vz

∂Vr

∂z
−

V 2
ϕ

r

}

+ Vr

{
∂ρ

∂t
+ Vr

∂ρ

∂r
+

Vϕ

r

∂ρ

∂ϕ
+ Vz

∂ρ

∂z

}
+ ρ

[
1

r

∂

∂r
(r Vr) +

1

r

∂Vϕ

∂ϕ
+

∂Vz

∂z

]
= − ∂P

∂r
− ρ

∂Φ

∂r
− σ Vr, (77)

where the second equation is obtained by simply multiplying the continuity
equation by Vr. Note that we have included the mass source term. Adding
these we get the momentum equation in a form we can integrate over z and ϕ
as:

∂(ρ Vr)

∂t
+

1

r

∂(rρV 2
r )

∂r
+

1

r

∂(ρVϕVr)

∂ϕ
+

∂(ρVrVz)

∂z
− ρ

V 2
ϕ

r
(78)

= −∂P

∂r
− ρ

∂Φ

∂r
+ σVr.

We can similarly derive the azimuthal momentum equation as:

∂(ρ Vϕ)

∂t
+

1

r

∂(rρVrVϕ)

∂r
+

1

r

∂(ρV 2
ϕ )

∂ϕ
+

∂(ρVϕVz)

∂z
+ ρ

VϕVr

r
(79)

= −1

r

∂P

∂ϕ
− ρ

r

∂Φ

∂ϕ
+ σVϕ.

And finally for the z-momentum equation:

∂(ρ Vz)

∂t
+

1

r

∂(rρVrVz)

∂r
+

1

r

∂(ρVϕVz)

∂ϕ
+

∂(ρV 2
z )

∂z
(80)

= −∂P

∂z
− ρ

∂Φ

∂z
+ σVz.

A.4 Integrated momentum equations

We will ignore the time-derivative terms and assume our galaxy is statistically
stationary. Now we want to substitute for the pressure in the radial-momentum
equation using the results from the other two directions. First we rewrite the
z-momentum equation, equation 80 to move the pressure to the left-hand side;
i.e.,

∂P

∂z
= −ρ

∂Φ

∂z
− 1

r

∂(rρVrVz)

∂r
− 1

r

∂(ρVϕVz)

∂ϕ
− ∂(ρV 2

z )

∂z
+ σVz. (81)
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Integrating over z:

P + ρV 2
z =

∫ z

−∞
dz′
{
−ρ

∂Φ

∂z′
− 1

r

∂(rρVrVz)

∂r
− 1

r

∂(ρVϕVz)

∂ϕ
+ σVz

}
+ function of r, ϕ. (82)

Note that ρV 2
z also appears on the left-hand side.

In a typical turbulent thin-shear flow, the right-hand side of equation 82
is negligible. We assume that to be the case here; but note that we need to
verify this a posteriori. Since there is presumed no flow and no pressure gradient
outside the galaxy, the only streamwise pressure gradient inside the galaxy must
be due only to the variation in the r-direction of ρV 2

z . So we can differentiate
P with respect to r and substitute this into equation 79 to obtain to leading
order:

∂(ρ Vr)

∂t
+

1

r

∂(rρV 2
r )

∂r
+

1

r

∂(ρVϕVr)

∂ϕ
+

∂(ρVrVz)

∂z
− ρ

V 2
ϕ

r

=
∂

∂r

[
ρV 2

z

]
− ρ

∂Φ

∂r
+ σVr. (83)

We can integrate this over z and average over ϕ to obtain:

∂⟨ρ Vr⟩
∂t

+
1

r

∂r⟨ρV 2
r ⟩

∂r
− ∂

∂r
⟨ρV 2

z ⟩ −
⟨ρV 2

ϕ ⟩
r

= −⟨ρ ∂Φ

∂r
⟩+ ⟨σVr⟩. (84)

Note that the ∂/∂ϕ and ∂/∂z-terms have vanished identically, the former be-
cause of the assumed periodicity and the latter because the variables ρ and Vr

are presumed zero above and below the galactic disk. This is the fundamental
integral equation used in section 2.3 in the main body of the paper.

We make the following top-hat definitions:

⟨ρV 2
ϕ ⟩ = ⟨ρ⟩V 2

ϕth, (85)

⟨ρV 2
r ⟩ = ⟨ρ⟩V 2

rth, (86)

⟨ρV 2
z ⟩ = ⟨ρ⟩V 2

zth, (87)

⟨ρ ∂Φ

∂r
⟩ = ⟨ρ⟩dΦth

dr
. (88)

Now let’s consider what happens if we include the result at the end of Section
A.2. First let’s examine the second term on the left-hand-side of equation 84;
i.e., if approximately, ⟨rρV 2

r ⟩ ≈ ⟨rρVr⟩Vrth ≈ ⟨rρ⟩V 2
rth, then we can write:

1

r

∂

∂r

(
r⟨ρV 2

r ⟩
)

≈ 1

r

∂

∂r
(r⟨ρVr⟩Vrth)

≈ Vrth

r

d

dr
(r⟨ρVr⟩) + ⟨ρVr⟩

d

dr
Vrth

≈ Vrth⟨σ⟩+
σL

r

d

dr
Vrth, (89)
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where we have substituted using equations 73 and 74.
If we further assume that ⟨σVr⟩ ≈ ⟨σ⟩Vrth, substitution into equation 89

yields:

σL

r

d

dr
Vrth − d

dr
⟨ρV 2

z ⟩ −
⟨ρV 2

ϕ ⟩
r

= −⟨ρ ∂Φ

∂r
⟩. (90)

Note that we already assumed statistically stationary for the continuity relation
so we drop the time derivative here as well.

Substituting the top-hat definitions into equation 90 and dividing by ⟨ρ⟩ and
rearranging yields:

dΦth

dr
=

V 2
ϕth

r
− 1

⟨ρ⟩

{
σL

r

dVrth

dr
+

d

dr

(
⟨ρ⟩V 2

zth

)}
=

V 2
ϕth

r
− dV 2

zth

dr
− V 2

zth

d

dr
ln⟨ρ⟩ −

{
σL

r⟨ρ⟩
dVrth

dr

}
. (91)

Note that we still have the same density problem with the ln⟨ρ⟩ term if ⟨ρ⟩ ∝
exp−r/R. But V 2

z << V 2
r (and away form the center V 2

r << V 2
ϕ as well), so

this term is probably negligible, even with an exponential density. A power law
density creates no problems at all.

A.5 Angular momentum

The total angular momentum in an isolated galaxy is given by:

Ig =

∫ ∞

0

dr r

∫ 2π

0

dϕ

∫ ∞

−∞
dz ρ(r⃗)

[
r⃗ × V⃗

]
=

∫ ∞

0

dr

∫ 2π

0

dϕ

∫ ∞

−∞
dz
[
r2 ρ(r, ϕ, z)Vϕ(r, ϕ, z)

]
= 2π

∫ ∞

0

dr r2 ⟨ρ(r)Vϕ(r)⟩. (92)

This clearly implies that Ig can be finite only if r2 ⟨ρ(r)Vϕ(r) is integrable.
We can approximate the density velocity product using ⟨ρ(r)⟩ and our tophat
velocity, Vϕth(r) as follows:

Ig = 2π

∫ ∞

0

dr r2 ⟨ρ(r)Vϕ(r)⟩

≈ 2π

∫ ∞

0

dr
[
r2 ⟨ρ(r)⟩Vϕth(r)

]
.

(93)
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This is integrable only if ⟨ρ(r)⟩Vϕth → 0 faster than 1/r3. So if Vϕth(r) →
constant as r → ∞, then we must have ⟨ρ(r)⟩ → 0 faster than 1/r3 to make the
angular momentum integral finite. If Vϕth itself drops (as in the Milky Way)
because the galaxy is flaring out, then powers of less than 1/r3 are acceptable.
In fact, if powers less than 1/r3 are observed, it could be a clue that the galaxy
is flaring out.

A.6 Gauss’ gravitational law

Since the velocities are small compared to the speed of light, Gauss gravitational
law applies. In cylindrical polar coordinates it is given by:[

1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂ϕ2
+

∂2

∂z2

]
Φ(r, ϕ, z) = 4πGρ(r, ϕ, z). (94)

where G is the universal gravitational constant. Like the momentum equation
above, we deal with the averages of this equation in the main body of the text.

We integrate this over z and average over ϕ to obtain:

⟨
[
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂ϕ2
+

∂2

∂z2

]
Φ(r, ϕ, z)⟩ =

1

r

d

dr

(
r⟨ d
dr

Φ⟩
)
+

{
1

2πr2

∫ ∞

−∞
dz

(
∂Φ

∂ϕ

∣∣∣∣2π
o

)}
+

{
1

2π

∫ 2π

0

dϕ

(
∂Φ

∂z

∣∣∣∣∞
−∞

)}
= 4πG ⟨ρ(r)⟩. (95)

But ∂Φ/∂ϕ|2πo = ∂Φ/∂ϕ|2π − ∂Φ/∂ϕ|o = 0 since we have assumed periodic and
smooth. Also:

∂Φ

∂z

∣∣∣∣∞
−∞

=
∂Φ

∂z

∣∣∣∣
∞

− ∂Φ

∂z

∣∣∣∣
−∞

. (96)

We assume ∂Φ/∂z vanishes as |z| → ∞, since to not vanish would imply a
finite gravitaational force at infinte distance. For a galaxy of finite extent, a
finite force at infinity in any direction would surely be unphysical. Appendix B
considers an alternative approach to the same conclusion using classical Green’s
function analysis.

Thus equation 95 reduces to:

1

r

d

dr

(
r⟨ d
dr

Φ⟩
)

= 4πG ⟨ρ(r)⟩. (97)

Appendix B shows several alternative ways to derive this same result using
classicaal Fourier and Bessel analysis.

Now we can use this to define our ‘momentum thickness’, zm(r), by:

zm(r)
dΦth(r)

dr
=

1

2π

∫ 2π

0

dϕ

∫ ∞

−∞
dz

∂Φ(r, ϕ, z)

∂r
. (98)
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Note that dΦth(r)/dr has already been defined in equation 88. So our gravita-
tional law reduces to:

1

r

d

dr

[
r

(
zm

d

dr
Φth

)]
= 4πG ⟨ρ(r)⟩. (99)

Substituting from equation 91 yields:

1

r

d

dr

[
r

(
zm

{
V 2
ϕth

r
− dV 2

zth

dr
− V 2

zth

d

dr
ln⟨ρ⟩ −

{
σL

r⟨ρ⟩
dVrth

dr

}})]
= 4πG ⟨ρ(r)⟩.

(100)
Or clearing the r terms:

1

r

d

dr

(
zm

[
V 2
ϕth − r

dV 2
zth

dr
− rV 2

zth

d

dr
ln⟨ρ⟩ − σL

⟨ρ⟩
dVrth

dr

])
= 4πG ⟨ρ(r)⟩. (101)

Note that σL(r) is given by 73; so reversing the sides:

σL = r⟨ρ(r)Vr(r)⟩ ≈ r⟨ρ(r)⟩Vrth(r). (102)

So if we know ⟨ρ⟩ and Vrth, we can determine σL.
Alternatively we can substitute equation 102 into equation 101 to obtain:

1

r

d

dr

(
zm

[
V 2
ϕth − 1

2
r
dV 2

rth

dr
− r

dV 2
zth

dr
− rV 2

zth

d

dr
ln⟨ρ⟩

])
= 4πG ⟨ρ(r)⟩. (103)

This form is particularly nice since it includes the source terms implicitly in
the dV 2

rth/dr-term. Note that if dV 2
rth/dr ≤ 0, dV 2

zth/dr ≤ 0 and d⟨ρ⟩/dr < 0
for large r, these extra terms act to decrease the product zmV 2

ϕth for any given
density distribution on the right-hand-side.
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B Alternative derivation of momentum and grav-
itational law integrals

This appendix shows an alternative derivation of the results of Sections 2.3 and
2.4 in the main body of the text using standard Fourier and Bessel function
analyses. The results are the same, but instructive none-the-less.

B.1 Fourier decomposition of gravitational potential and
density

We begin by representing the three-dimensional gravitational potential as a
Fourier series in ϕ and a Fourier transform over z: i.e.,

Φ(r, ϕ, z) =

∞∑
m=−∞

∫ ∞

−∞
dk Φ̂(r, k,m) e+i (mϕ+ k z), (104)

ρ(r, ϕ, z) =

∞∑
m=−∞

∫ ∞

−∞
dk ρ̂(r, k,m) e+i (mϕ+ k z), (105)

where Φ̂(r,m, k) and ρ̂(r,m, k) are the corresponding Fourier series and Fourier
transform coefficients defined as:

Φ̂(r,m, k) =

[
1

2π

]2 ∫ 2π

0

dϕ

∫ ∞

−∞
dzΦ(r, ϕ, z) e−i (mϕ+ k z), (106)

ρ̂(r,m, k) =

[
1

2π

]2 ∫ 2π

0

dϕ

∫ ∞

−∞
dz ρ(r, ϕ, z) e−i (mϕ+ k z). (107)

We note that the transforms of the derivatives of Φ(r, ϕ, z) are given by:

FT{∂Φ(r, ϕ, z)/∂z} = −i k Φ̂(r, k,m), (108)

FT{∂Φ(r, ϕ, z)/∂ϕ} = −im Φ̂(r, k,m). (109)

B.2 From Poisson (Gauss’ Law) to Bessel

Transforming both sides of our Poisson equation yields:[
1

r

∂

∂r

(
r
d

dr

)
− (

m2

r2
+ k2)

]
Φ̂(r,m, k) = 4πG ρ̂(r,m, k). (110)

This is a form of Bessel’s equation that has traditionally been solved us-
ing Green’s functions. For three-dimensional cylindrical coordinates this is not
trivial (c. f. [37]). We will show a solution solved this way in Section B.4. But
given that our sole interest is in the results averaged over ϕ and integrated over
z there is an almost trivial way to get to the desired solution. We present this
first, then show both solutions are the same.
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B.3 The fast way using properties of Fourier methods

Note what happens to the Fourier transformed gravitational potential and den-
sity fields if we set m = 0 and k = 0 in equations 106 and 107 and multiply by
2π; i.e.,

2π Φ̂(r, 0, 0) = 2π Φ̂(r,m = 0, k = 0) =

[
1

2π

] ∫ ∞

−∞
dzΦ(r, ϕ, z), (111)

2π ρ̂(r, 0, 0) = 2π ρ̂(r,m = 0, k = 0) =

[
1

2π

] ∫ ∞

−∞
dz ρ(r, ϕ, z), (112)

since the exponentials just reduce to 1. The integrals on the right-hand-side are
exactly the un-transformed quantities integrated over z and averaged over ϕ
we seek, ⟨Φ(r)⟩ and ⟨ρ(r)⟩; namely,

⟨Φ(r)⟩ =

[
1

2π

] ∫ ∞

−∞
dzΦ(r, ϕ, z) = [2π] Φ̂(r, 0, 0), (113)

⟨ρ(r)⟩ =

[
1

2π

] ∫ ∞

−∞
dz ρ(r, ϕ, z) = [2π] ρ̂(r, 0, 0). (114)

Similarly, the average over ϕ and integral over z of the potential gradient,
⟨∂Φ(r)⟩ is given by:

⟨∂⟨Φ(r, ϕ, z)
∂r

⟩ = 2π
∂Φ̂(r, 0, 0)

∂r
. (115)

We can use these to rewrite our Bessel equation. Setting m = 0 and k = 0
in equation 110 yields:

1

r

d

dr

(
r
∂Φ̂(r, 0, 0)

∂r

)
= 4πGρ̂(r, 0, 0). (116)

Or equivalently using equations 114 and 115:

1

r

d

dr

(
r ⟨∂Φ(r)

∂r
⟩
)

= 4πG ⟨ρ(r)⟩. (117)

Thus we have a direct expression relating the spatially averaged gravitational
potential, ⟨∂Φ(r)/∂r⟩, to the spatially-averaged density, ⟨ρ(r)⟩. This can be
integrated from 0 to r to obtain:

r ⟨∂Φ(r)
∂r

⟩ = 4πG

∫ r

0

⟨ρ(r′)⟩ r′ dr′. (118)

This is exactly equation 25 which we obtained in the main body of text by
averaging over ϕ and integrating over z and appling the boundary condition
that ∂Φ(r, ϕ, z)/∂z vanishes in the limit as |z| → 0.
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B.4 Complete solution using modified Bessel functions

The lecture notes of Fitzpatric [37] present an elegant and interesting derivation
of the complete solution to equation 110 for homogeneous boundary conditions.
First he derives a Green’s function in cylindrical coordinates using modified
Bessel functions, Im(kr) and Km(kr). What makes this particularly interesting
is that Im blows up as k r → ∞ while the second blows up as k r → 0. So the
solution is spliced together in two parts by multiplying them together. The final
result is:

Φ̂(r,m, k) = [4πG]

{
Km(k r)

∫ r

0

ρ̂(r′,m, k))Im(k r′) r′dr′ (119)

+ Im(k r)

∫ ∞

r

ρ̂(r′,m, k)Km(k r′)r′dr′
}
.

Now we can use the same Fourier transform ‘trick’ we used in Section B.3
above to obtain the integrated density and gravitation profiles directly by setting
m and taking the limit as k → 0; i.e.,

Φ̂(r, 0, 0) = [4πG] lim
k→0

{
K0(k r)

∫ r

0

ρ̂(r′, 0, 0))I0(k r
′) r′dr′

+ I0(k r)

∫ ∞

r

ρ̂(r′, 0, 0)K0(k r
′)r′dr′

}
. (120)

The Bessel functions have the following properties in the limit as their arguments
go to zero:

I0(x) → 1, (121)

I ′0(x) =
1

2
[I−1 + I+1] = I1 =

x

2
, (122)

K0(x) → −γ − ln(x/2), (123)

K ′
0(x) → −1/x, (124)

where γ is Euler’s constant (v. [1, 42]).
It is straightforward to show by integration by parts and differentiation with

respect to r of equation 120 that this yields exactly the results of equations 116
to 118 above. Note that it is the differentiation of the ln(k r)-term (from K0(k r)
that produces the 1/r-dependence necessary to cancel the 1/r multiplying the
velocity-squared. And this in turn produces the observed asymptotic velocities
which do not die off like the planetary results.

Alternatively equation 117 can be differentiated directly with respect to r
to yield:
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∂Φ̂(r, 0, 0)

∂r
= [4πG] lim

k→0

{
kK ′

0(k r)

∫ r

0

ρ̂(r′, 0, 0))I0(k r
′) r′dr′

− k I ′0(k r)

∫ ∞

r

ρ̂(r′, 0, 0)K0(k r
′)r′dr′

}
= [4πG] lim

k→0

{
k (

1

k r
)

∫ r

0

ρ̂(r′, 0, 0)) 1 r′dr′

− k (
k r

2
)

∫ ∞

r

ρ̂(r′, 0, 0) [− ln(γ k r′/2)] r′dr′
}

= [4πG]

{
1

r

∫ r

0

ρ̂(r′, 0, 0)) r′dr′
}
. (125)

If we multiply both sides by 2π and use the Fourier transform limit trick, we
recover exactly equation 25.

B.5 Combining Bessel and the momentum equations

We know from the main body of the text and Appendix 1.2 that our momentum
integral equation integrated over z and averaged over ϕ reduces to:

⟨V 2
ϕ ⟩ −

r

2

d

dr
⟨V 2

r ⟩ = r ⟨dΦ(r)
dr

⟩. (126)

We note that all dependent variables are fields, so we can substitute from
one equation to another. Substituting for the spatially-averaged potential gra-
dient from the momentum integral of equation 126 into equation 117 yields
immediately our original result in the main body of the text; namely:

1

r

d

dr

(
⟨V 2

ϕ ⟩ −
r

2

d

dr
⟨V 2

r ⟩
)

= 4πG⟨ρ(r)⟩. (127)

Thus by using Fourier analysis in a clever way we have found an alternative
route to the same result we obtained in the main body of the text by simply
integrating the equations directly.

B.6 The hazards of solving the hard way

A much more complicated approach is to actually solve equation 110 to obtain
Φ̂(r,m, k) as we did in Section B.4 above for an assumed three-dimensional
density distribution.4 Then inverting the Fourier transform and Fourier series
coefficients using equation 104 by integrating over all k and performing the
infinite sum over m to get the gravitational potential in physical variables: i.e.,

4Note that the three-dimensional density is usually assumed, since almost always only the
two-dimensional one, ⟨ρ(r)⟩, can be measured.
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Φ(r, ϕ, z) =

∞∑
m=−∞

∫ ∞

−∞
dk e+i[mϕ+k z] Φ̂(r, ϕ, z). (128)

Then differentiating to find ∂Φ(r, ϕ, z)/∂r.
Some papers (e.g. Eilers et al.[11]) take the ∂Φ(r, ϕ, z)/∂r so computed (or

by numerical equivalent), evaluate it along z = 0 and set this equal to V 2
ϕ /r (or

the circular velocity equivalent, V 2
c /r, computed from Jeans equation); i.e.,

V 2
ϕ

r
or

V 2
c

r
=

∂Φ

∂r

∣∣∣∣
z=0

. (129)

But as noted above, this requires summing over allm values and integrating over
all k from −∞ to∞. In principle, this should be straight-forward. But given the
results cited in the various papers (which seldom explain what they actually did),
apparently not. The reason we suspect is most likely due to a mishandling of the
logarithmic singularity, from K0(k r) at the origin in equation 120. Singularities
at the origin in Fourier space always appear at large values in physical space.
By contrast, our solution can be obtained by simply setting k = 0 and m = 0
in the Bessel solutions above.

So what exactly have others done? Most early contributors (e. g. Oort [33],
Zwicky [45], Ruben et al. [35] avoided solving the Gauss’ Law equation entirely,
clearly expecting galaxies to behave as a planetary system. Others more recently
(e. g. , Eilers et al. [11], McGaugh et al. [31]) have tried to actually solve the
equation as we have done above, either analytically or numerically. All seem to
show the opposite of what we derive here: all their computed potential gradients
decrease with increasing radius, similar to the planetary results. It is not hard
to imagine why – especially given the logarithmic singularity at k r = 0. In
fact as we discovered ourselves, if not handled properly it leads to the erroneous
conclusion that the gravitational potential dies off faster than 1/r with distance.

B.7 Summary of this appendix

Luckily our result here and in the main body of the text appears to be true
and quite independent of the Bessel solutions above using Io and Ko, and even
the Green’s function as derived in [37]. In light of our observation above about
the behavior of the particular solution involving Bessel functions when inverse
transforming, this is good. Clearly our solution here depends only on the Fourier
series and transform representations. The former always exist for periodic pro-
cesses (which we have by assumption), and the Fourier transforms almost always
exist, at least in the sense of generalized functions (c.f. [29, 28]). Surely they
exist for any physical z-profile.

Our solution in the main body of the text depended only on ∂Φ/∂z vanish-
ing in the limit as |z| → ∞ (a Dirichlet boundary condition and only in one
direction). Note that most (maybe all) papers, past and present, say little to
nothing about how they solved the Poisson equation. Nor none, as best we can
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tell, worked with integrated equations. Given that the measurements of density
in particular were always integrated across the galaxy thickness, this seems a
major oversight.
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C An equilibrium similarity solution for galax-
ies

We seek a similarity solution of the equations of Section 83 of the form:

ρ(r, z, ϕ) = ρs(r, ϕ) fρ(η), (130)

Vϕ(r, z, ϕ) = Vsϕ(r, ϕ)Fϕ(η), (131)

Vr(r, z, ϕ) = Vsr(r, ϕ)Fr(η), (132)

Vz(r, z, ϕ) = Vsz(r, ϕ)Fz(η), (133)

Φ(r, z, ϕ) = Φs(r, ϕ) g(η), (134)

where η is defined to be:

η =
z

δ(r)
. (135)

The functions with subscript ‘s’ are ‘scale functions’ which depend only on r
and ϕ, and the functions multiplying them have the scaled z-dependence. Note
that we have suppressed any time dependence, at least for now. Also we do not
need to independently consider σ since it is simply related to Vr through the
continuity equation.

It is important to also note that at this point we are merely transforming the
equations, and making no assumptions about them. If there are no solutions of
the form we seek, we won’t find any. But if there is such a solution we hope
that δ(r) can be identified with our momentum thickness, zm(r).

C.1 Similarity of the r-momentum equation

We consider the terms in the statistically stationary radial moment equation
83. Note that we could have kept the ∂/∂t-term, but for now restrict ourselves
to galaxies in equilibrium. Substituting our similarity transformations into the
terms one-by-one yields the following:
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1

r

∂(r ρ V 2
r )

∂r
=

ρ V 2
r

r
+

∂(ρ V 2
r )

∂r
, (136)

=

[
ρs V

2
sr

r
+

∂

∂r

{
ρsV

2
sr

}] (
fρ F

2
r

)
−
[
ρs V

2
sr

] [1
δ

dδ

dr

]
η
d

dη

(
fρ F

2
r

)
,

1

r

∂(ρVϕVr)

∂ϕ
=

[
1

r

∂

∂ϕ
{ρs Vsϕ Vsr}

]
(fρ FϕFr) , (137)

∂(ρVrVz)

∂z
=

[
ρs Vsr Vsz

δ

]
d

dη
(fρ Fr Fz), (138)

ρ
V 2
ϕ

r
=

[
ρs V

2
sϕ

r

] (
fρ F

2
ϕ

)
, (139)

ρ
∂Φ

∂r
=

[
ρs

∂Φs

∂r

]
(fρgs)− [ρsΦs]

[
1

δ

dδ

dr

] (
ηfρ

dg

dη

)
(140)

=

[
ρsΦs

r

]{[
∂ lnΦs

∂ ln r

]
(fρg)−

[
d ln δ

d ln r

] (
ηfρ

dg

dη

)}
. (141)

Note that on the right-hand-side we have grouped all the r, ϕ-dependent terms
in square brackets, and the η and ϕ-dependent terms in parentheses. We shall
follow this convention throughout, unless parentheses are necessary inside the
square brackets for clarity.

These square-bracketed terms all have the same r-dependence if:

[
ρs V

2
sr

r

]
+

[
∂

∂r

{
ρsV

2
sr

}]
∝
[
ρs V

2
sr

δ

dδ

dr

]
∝
[
1

r

∂

∂ϕ
{ρs Vsϕ Vsr}

]
∝
[
ρs Vsr Vsz

δ

]
∝

[
ρs V

2
sϕ

r

]
∝
[
ρs

∂Φs

∂r

]
∝ [ρsΦs]

[
1

δ

dδ

dr

]
. (142)

We have deliberately grouped the r − ϕ-dependent terms together if they mul-
tiply the same η-dependent terms since the r, ϕ-terms may cancel each other
out.

The proportionality between all the quantities in equation 142 can be satis-
fied only if:
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[
r

δ

dδ

dr

]
=

[
d ln δ

d ln r

]
= const, (143)[

∂

∂r
(r ρsV

2
sr)

]
∝ V 2

sϕ(r, ϕ), (144)

V 2
sϕ(r, ϕ)

V 2
sr(r, ϕ)

∝
[
d ln δ(r)

d ln r

]
= const, (145)

Vsz(r, ϕ)

Vsr(r, ϕ)
∝ dδ(r)

dr
, (146)

V 2
sϕ(r, ϕ)

Φs(r, ϕ)
∝

[
d ln δ

d ln r

]
= const, (147)[

∂ lnΦs(r, ϕ)

∂ ln r

]
∝

[
V 2
sϕ

V 2
sr

]
= const. (148)

We have kept squared velocities together since we intend to average their squares
later. From the last equation, equation 144 we can see that the galaxy similarity
solution is a true logarithmic spiral, since the ratio of Vsr to Vsϕ is constant.
We note for future use, equation 145, since this is the term we have identified
as problematical in the classical approach (e.g. [11]). Since its r-dependence
is directly proportional to V 2

sϕ, clearly it should not be. So if it is, something
is wrong. The term involving the partial derivative with respect to ϕ is very
interesting, but we defer discussion of it to below.

C.2 Similarity of the continuity equation

Now we consider the continuity equation given by equation 69. Ignoring the
time term and treating these as averages yields for the individual terms:

1

r

∂

∂r
(rρVr) =

[
ρsVsr

r
+

∂

∂r
{ρsVsr}

]
(fρFr) −

[
ρsVsr

δ

dδ

dr

]
η
d

dη
(fρFr),

(149)

1

r

∂

∂ϕ
(ρVϕ) =

[
1

r

∂

∂ϕ
{ρsVsϕ}

]
fρFϕ, (150)

∂

∂z
(ρVz) =

[
ρsVsz

δ

]
d

dη
(fρFz). (151)

Note that the time derivative term could also have been included, as well as the
source term. The time scale would have to be chosen to satisfy the additional
term.

Full equilibrium similarity requires that any non-zero terms have the same
r and ϕ-dependence; i.e.,[

ρsVsr

r

]
∝
[
∂

∂r
{ρsVsr}

]
∝
[
ρsVsr

δ

dδ

dr

]
∝
[
1

r

∂

∂ϕ
{ρsVϕ}

]
∝
[
ρsVsz

δ

]
. (152)

45



The second and last terms are exactly equation 146, and show clearly how
the entrainment and growth rate of the disk with r are related. The ∂/∂ϕ-term
we will discuss in detail later in Section C.5 below.

The first two terms on the left-hand side resemble equation 144, but have a
factor Vsr instead of V 2

sr; i.e.,[
∂

∂ ln r
(ln r ρsVsr)

]
∝
[
d ln δ

d ln r

]
= constant. (153)

It is straight-forward to show that both can be true:

[
∂

∂ ln r
(ln r ρsVsr)

]
=

∂

∂ ln r
[ln r + ln ρs + lnVsr] ∝

[
d ln δ

d ln r

]
,[

∂

∂ ln r
(ln r ρsV

2
sr)

]
=

∂

∂ ln r
[ln r + ln ρs + 2 lnVsr] ∝

[
d ln δ

d ln r

]
.

Subtraction of the upper from the lower yields:

2
∂

∂ ln r
lnVrs ∝

∂

∂ ln r
lnVrs, (154)

which is surely true.
Finally we note the interesting relation between the ϕ-derivative of Vsϕ and

Vz; i.e., [
1

r

∂

∂ϕ
{ρsVϕ}

]
∝
[
ρsVsz

δ

]
. (155)

This clearly shows that the Fourier component of any entrainment velocity,
Vsz(r, ϕ) must be ninety degrees out of out of phase with the azimuthal velocity,
Vsϕ(r, ϕ). So there must be rotation around any spiral if the galaxy
thickness grows.

C.3 Similarity of Gauss’ gravitational law

We start with Gauss’ gravitational law in cylindrical coordinates:[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂ϕ2
+

∂2

∂z2

]
Φ(r, ϕ, z) = 4πGρ(r, ϕ, z). (156)

Transforming the first term on the left-hand-side yields:
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1

r

∂

∂r

(
r
∂

∂r

)
Φ(r, ϕ, z) =

1

r

∂

∂r
r

{[
∂Φs

∂r

]
g(η)−

[
Φs

δ

dδ

dr

]
η
dg

dη

}
=

1

r

∂

∂r

{
Φs

[
∂ lnΦs

∂ ln r

]
g(η)−

[
Φs

d ln δ

d ln r

]
η
dg

dη

}
(157)

=

[
∂2Φs(r, ϕ)

∂r2
+

1

r

∂Φs(r, ϕ)

∂r

]
(g(η))

−Φs(r, ϕ)
∂

∂r

{[
1

δ(r)

dδ

dr

](
η
∂g

∂η

)}
−
[
Φs

r
+

∂Φs

∂r

] [
1

δ

dδ

dr

](
η
dg

dη

)
=

[
∂2Φs(r, ϕ)

∂r2
+

1

r

∂Φs(r, ϕ)

∂r

]
(g(η)) (158)

−Φs(r, ϕ)

{[
d2 ln δ

dr2

](
η
∂g

∂η

)
+

[
1

δ

dδ

dr

]2(
η
d

dη

(
η
dg

dη

))}

−
[
Φs

r
+

∂Φs

∂r

] [
1

δ

dδ

dr

](
η
dg

dη

)
.

Note that we really need only the second line, equation 157, since we are going
to substitute for it using equation 142. But transforming the second and third
terms on the left-hand-side of equation 156 anyway yields:

1

r2
∂2

∂ϕ2
Φ(r, ϕ, z) =

[
1

r2
∂2Φs

∂ϕ2

]
(g) , (159)

∂2

∂z2
Φ(r, ϕ, z) =

[
Φs

δ2

]
(
d2g

dη2
). (160)

As before, for an equilibrium similarity solution, all the non-zero square
bracketed terms must have the same r-dependence; i.e.,

[
∂2Φs(r, ϕ)

∂r2
+

1

r

∂Φs(r, ϕ)

∂r

]
=

[
1

r

∂

∂r

(
r
∂Φs

∂r

)]
∝ Φs(r, ϕ)

r2

[
d ln δ

d ln r

]
∝ Φs

r2

[
d ln δ

d ln r

]2
∝ Φs

r2

[
d2 ln δ

d ln r2

]
∝
[
1

r2
∂2Φs

∂ϕ2

]
∝
[
Φs

δ2

]
∝ G [ρs], (161)

where the last term arises from the right-hand-side of equation 156.
There seems to be only one way to satisfy these three conditions:

Φs(r, ϕ)

r2

[
d ln δ

d ln r

]
∝ Φs

r2

[
d ln δ

d ln r

]2
∝ Φs

r2

[
d2 ln δ

d ln r2

]
; (162)
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namely, d ln δ/d ln r = constant. But we must also satisfy:

Φs(r, ϕ)

r2

[
d ln δ

d ln r

]
∝
[
Φs(r, ϕ)

δ2(r)

]
. (163)

We also know that d ln δ/d ln r = constant, so there are only two possible solu-
tions: either

δ(r) ∝ r; (164)

or
δ = constant. (165)

Equation 164 implies immediately that:

d ln δ

d ln r
= 1 or 0 (166)

So wherever this factor occurs, we can simply replace it by 1 or 0.
Note that the next to last term, Φs/δ

2, arises from the ∂2Φ/∂z2. So if for
some reason this term (or its integrals) vanish identically (say due to
symmetry in the η-direction), this condition falls out of the analysis.
So it, like the condition for the constancy of the ratio of Vsϕ to Vsr, could not
have been deduced from only an integral analyses.

C.4 The integrated density, ρ

To this point in our similarity analysis we’ve been dealing with the actual three-
dimensional density, ρ(r, ϕ, z) = ρs(r, ϕ)fρ(η). But all of the data deal with the
density, ⟨ρ(r)⟩, which has been integrated across the disk in the z-direction AND
averaged over ϕ. Now we need another density which has only been integrated
over z, say ρ(r, ϕ), defined by:

ρ(r, ϕ) =

∫ ∞

−∞
ρ(r, ϕ, z)dz. (167)

Note that for now we use the overline to distinguish this density from the one
averaged over ϕ and integrated over z.

Substituting for ρ(r, ϕ, z) yields:

ρ(r, ϕ) = [ρs(r, ϕ) δ(r)]

∫ ∞

−∞
fρ(η)dη. (168)

So the r-dependence of the scale for the integrated density will differ by a factor
of δ(r) from ρs, and by a coefficient determined by the integral of the profile
shape.
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C.5 The ϕ-dependence

We can express ρs(r, ϕ) and Φs(r, ϕ) as a Fourier series in ϕ, say:

Φs(r, ϕ) = Σ∞
−∞ e−i2πmϕΦ̂s(r,m), (169)

ρs(r, ϕ) = Σ∞
−∞ e−i2πmϕρ̂ρ(r,m). (170)

For m = 0, the term ∂2Φs/∂ϕ
2 = 0 and we are left with:

Φ̂s(r, 0) ∝ Gδ2(r) ρ̂s(r, 0). (171)

But Φ̂(r, 0) and ρ̂s(r, 0) are just the azimuthally averaged values of Φs and ρs, say
Φ(r, z) and ρ(r, z). So the aziumthally-averaged potential and three-dimensional
density are related by

Φ(r, z) ∝ Gδ2(r) ρ(r, z). (172)

For m ̸= 0 the ∂2/∂ϕ2 term is in general not zero, so the last three terms of
equation 161 require:

−(2πm)2
Φ̂s(r,m)

r2
∝ Φ̂s(r,m)

δ2
∝ G [ρ̂s(r,m)]. (173)

Thus if there are terms for which m ̸= 0, then we must have

δ ∝ r

2πm
. (174)

Note that this condition applies ONLY for m ̸= 0, so clearly it applies only
to azimuthally asymmetric or spiral galaxies! But it suggests that the actual
spreading rate of the galactic disk might be dominated by its mean or low
Fourier components.

C.6 A complete similarity solution

A useful relation follows from the first line in equation 161:

1

r

∂

∂r

{
r
∂Φs

∂r

}
∝ G[ρs]. (175)

From equation 148 we have:

∂Φs

∂r
∝

V 2
sϕ

r
. (176)

Substitution into equation 175 yields immediately that:

1

r

∂

∂r
V 2
sϕ ∝ G[ρs]. (177)

Or integrating:

V 2
sϕ(r, ϕ) ∝ G

∫ r

0

ρs(r
′, ϕ)r′dr′. (178)
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From the last three terms of equation 142 by removing the common factor,
ρs/r, we have: [

V 2
sϕ

]
∝
[
r
∂Φs

∂r

]
− [rΦs]

[
1

δ

dδ

dr

]
. (179)

Substituting this into equation 175 yields:

1

r

{
∂

∂r
V 2
ϕ

}
∝ G[ρs]. (180)

But this is our previous result in the main body of the text, equation 32 and
those that followed.

C.7 Collecting all terms using similarity relations

Now we seem to have all the pieces. So we need to return to the full equations
and try to solve them, presumably by integrating over η. We have shown that
indeed the conditions for an equilibrium similarity solution can be satisfied. So
now we return to equation 83 to see what the final equation as a function of η
only looks like. We will not use this result in this paper, so it is of academic
interest only for now.

To begin, we substitute all of our similarity relations into equation 83:

[
ρs V

2
sr

r
+

∂

∂r

{
ρsV

2
sr

}] (
fρ F

2
r

)
−
[
ρs V

2
sr

] [1
δ

dδ

dr

]
η
d

dη

(
fρ F

2
r

)
+

[
1

r

∂

∂ϕ
{ρs Vsϕ Vsr}

]
(fρ FϕFr) +

[
ρs Vsr Vsz

δ

]
d

dη
(fρ Fr Fz)

−

[
ρs V

2
sϕ

r

] (
fρ F

2
ϕ

)
= −

{[
ρs

∂Φs

∂r

]
(fρ g)− [ρsΦs]

[
1

δ

dδ

dr

] (
η fρ

dg

dη

)}
. (181)

We note that the term in curly brackets on the right-hand-side is exactly equa-
tion 141, so we can plug it directly into the Gauss equation for ∂Φ/∂r using
equation 141. This is our special trick which made the momentum integral
derivation possible in the main body of the paper, so here we use it for the
transformed similarity equations.

First we divide the entire equation by ρsV
2
sr/r to obtain:
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[
∂

∂ ln r
ln
{
rρsV

2
sr

}] (
fρ F

2
r

)
− η

d

dη

(
fρ F

2
r

)
(182)

+

[
1

ρsV 2
sr

∂

∂ϕ
{ρs Vsϕ Vsr}

]
(fρ FϕFr) +

[
Vsz

Vsr

] [r
δ

] d

dη
(fρ Fr Fz)

−

[
V 2
sϕ

V 2
sr

] (
fρ F

2
ϕ

)
= −

[
Φs

V 2
sr

]{[
∂ lnΦs

∂ ln r

]
(fρg)−

(
η fρ

dg

dη

)}
.

Now we need to define the coefficients of our similarity relations which in
principle could be galaxy specific; i.e. different for each galaxy depending on its
history and initial conditions. Since these conditions are unknown, we denote
this possible dependence by *. So we define:

[
V 2
sϕ

V 2
sr

]
= A(∗), (183)[

∂

∂ ln r
ln
{
rρsV

2
sr)
}]

= B(∗), (184)[
1

ρsV 2
sr

∂

∂ϕ
{ρs Vsϕ Vsr}

]
= C(∗), (185)[

Vsz

Vsr

]
= D(∗),

[
dδ

dr

]
(186)[

Φs

V 2
sϕ

]
= E(∗). (187)

So substituting these into equation 182 yields:

[Φs]

{[
∂ lnΦs

∂ ln r

]
(fρ g)−

(
η fρ

dg

dη

)}
(188)

=
[
V 2
sr

]{
B
(
fρ F

2
r

)
− η

d

dη

(
fρ F

2
r

)
+C (fρ FϕFr) +D

d

dη
(fρ Fr Fz)−A

(
fρ F

2
ϕ

)}
= −

[
V 2
sϕ

A

]{
B
(
fρ F

2
r

)
− η

d

dη

(
fρ F

2
r

)
+C (fρ FϕFr) +D

d

dη
(fρ Fr Fz)−A

(
fρ F

2
ϕ

)}
. (189)

Now we need to re-write the right-hand-side as ∂Φ/∂r using equation 141,
then substitute it into Gauss’ equation. This will bring the density into the
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problem along with the ϕ, η-terms from Gauss’s law. Then we will integrate
that over η.

Collecting the terms for the Gauss gravitational law yields:

1

r

∂

∂r

{
Φs

[
∂ lnΦs

∂ ln r

]
(g)−

[
Φs

d ln δ

d ln r

](
η
dg

dη

)}
+

[
1

r2
∂2Φs

∂ϕ2

]
(g) +

[
Φs

δ2

]
(
d2g

dη2
)

= 4πG [ρs] (fρ). (190)

Substituting from equation 182 leaves:

− 1

A

{
B
(
fρ F

2
r

)
− η

d

dη

(
fρ F

2
r

)
+ C (fρ FϕFr)

+D
d

dη
(fρ Fr Fz)−A

(
fρ F

2
ϕ

)}[1
r

∂

∂r
V 2
sϕ

]
+E

[
1

r2
∂2V 2

sϕ

∂ϕ2

]
(g) + E

[
V 2
sϕ

δ2

]
(
d2g

dη2
)

= 4πG [ρs](fρ). (191)

Note that although this equation is by definition independent of r, it is still
dependent on η and ϕ. We will eliminate the η-dependence by integrating over
η across the galaxy. For the term in curly brackets we define:

Q(A,B,C,D,E) = (192)

−A

∫ ∞

−∞
dη

{
B
(
fρ F

2
r

)
− η

d

dη

(
fρ F

2
r

)
+C (fρ FϕFr) +D

d

dη
(fρ Fr Fz)−A

(
fρ F

2
ϕ

)}
.

where everything to the right of dη is to be integrated over dη. Clearly Q is
just a constant which is specific to each galaxy (since it depends on the profiles
of density and velocity which in turn depend on the starred constants). Note
that the dominant contribution is probably the last term, the integral over the
profile of ρV 2

ϕ . Clearly non-zero values of Vr could change Q significantly. Only
by considering actual profiles for fρ, Fϕ, Fr, Fz, can we determine whether the
Q increases or decreases if Vr is significant.

Now consider the last term on the left-hand-side of equation 191:∫ ∞

−∞

d2g

dη2
(η)dη =

dg

∂η

∣∣∣∣∞
−∞

. (193)
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If the galaxy is symmetrical in η, this term will vanish identically. If not it may
vanish anyway if its r-dependent coefficient vanishes. We will examine that
separately below.

Now consider the integral of next to the last term on the left-hand-side of
equation 191:

E

[
1

r2
∂2V 2

sϕ

∂ϕ2

]∫ ∞

−∞
g(η)dη. (194)

Unless the galaxy is anti-symmetrical (which seems unlikely), the integral is not
zero. So it is the double partial derivative with respect to ϕ that determines
whether this term must be included. We will deal only with azimuthally av-
eraged quantities (since that is most if not all of the data), so we only need
consider:

1

2π

∫ 2π

0

[
∂2V 2

sϕ

∂ϕ2

]
dϕ =

1

2π

{
∂

∂ϕ
V 2
sϕ

∣∣∣∣
2π

− ∂

∂ϕ
V 2
sϕ

∣∣∣∣
0

}
= 0. (195)

So since it is periodic by hypothesis, no matter the Fourier decomposition of
Vϕ, this term vanishes identically in the equation average over ϕ.

So if we average equation 191 over ϕ and integrate it from −∞ < η < ∞
leaves us with just:{
Q

∫ ∞

−∞
f2
ϕ(η)dη

}{
1

r

∂

∂r

[
δ(r)V 2

sϕ(r)⟩
]}

= 4πG

{∫ ∞

−∞
dη fρ(η)

[
δ(r) ρs(r)⟩

]}
,

(196)
where here we use the double overline to denote averaging over ϕ only; i.e.,

V 2
sϕ =

{
1

2π

∫ 2π

0

dϕ
[
V 2
sϕ(r, ϕ)

]}
, (197)

ρs(r)⟩ =

{
1

2π

∫ 2π

0

dϕ ρs(r, ϕ)

}
. (198)

Note that the term in curly brackets on the right-hand-side of equation 196 is
exactly the two-dimensional integrated density, ⟨ρ⟩, which is cited in most data

sets and used in the main body of the paper. Also V 2
sϕ does not in general

equal V
2

sϕ, but in the absence of evidence to the contrary we shall ignore (for
now) the difference. (Note also that there is a slight difference from the main
body of the text since there we integrated over z. The difference appears in the
δ in front of the integral.) Note that all the terms in Q involving E have fallen
out of the equation due to symmetry and averaging over ϕ.

So we are left with:{
1

r

∂

∂r

[
δ(r) ⟨V 2

sϕ(r)⟩
]}

= 4πGN ρ(r), (199)
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where N(∗) is defined to be:

N(∗) =
{
Q

∫ ∞

−∞
f2
ϕ(η)dη

}−1

, (200)

and contains all the profile dependent constants.
We can integrate equation 199 to obtain:

δ(r)
[
V 2

sϕ(r)− V 2
sϕ(ro)

]
= 4πGN

∫ r

ro

⟨ρs(r′)⟩r′dr′. (201)

The ⟨ρs(r)⟩ is just the azimuthally-averaged density integrated over the layer;
i.e., the quantity that is usually measured and reported. Note that there are
two contributions to the r-dependence of ⟨ρ⟩: the r-variation of the azimuthally-
averaged centerline density, ρs(r); and the spreading of the profile, δ(r).

We have not yet invoked equation 164, so we define K(∗) by:

δ(r) = K(∗) r. (202)

Clearly this gives us the linear relation we obtained for the Milky Way when we
plotted the right-hand side of equation 201 divided by V 2

sϕ(r).

D Interrelation of integral parameters

In fluid mechanics and turbulence integral parameters are quite commonly used.
The two most common methods are to define top-hat and/or Gaussian param-
eters. Both are defined from integrals, but the latter assumes the profile being
integrated is a Gaussian. We use both in this paper. This appendix shows how
they are related for the cylindrical polar coordinates of interest.

Consider a quantity, say ρ(r, ϕ, z) for which we might be only able to access
its value integrated over z and averaged over ϕ, say ⟨ρ(r)⟩, or only averaged
over ϕ, say ρ(r, z); i.e.,

⟨ρ(r)⟩ =
∫ ∞

−∞
dz

[
1

2π

∫ 2π

0

dϕ ρ(r, ϕ, z)

]
=

∫ ∞

−∞
dz ρ(r, z), (203)

where everything to the right of the differentials is to be integrated with respect
to that variable. The dimensions of ρ are mass over length-cubed, so the di-
mensions of ⟨ρ⟩ are mass over length-squared. If chose a particular value of ρ(·)
as representative, say ρth, as representative (for example its maximum value),
then we can define an integral length scale, say zt as:

zt(r) ρth(r) = ⟨ρ(r)⟩ =
∫ ∞

−∞
dz ρ(r, z). (204)

If we know one value somewhere, like z = 0, then we can be more precise and
choose:

ρth(r) = ρ(r, 0). (205)
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This is a particularly useful choice if we actually know the profile peaks at the
value, z = 0.

Sometimes it is useful to approximate the profile as Gaussian; i.e.,

ρ(z) ≈ ρ(0) e−z2/2σ2
z . (206)

Now we can actually find the relation between the top-hat parameter, zm(r),
and the Gaussian standard deviation parameter, say σz(r) since:

zt(r)ρth(r) =

∫ ∞

−∞
dz ρ(0)e−z2/2σz(r)

2

= ρ(0)
√
2π σz(r). (207)

The integral is easily evaluated leaving us with:

zt(r) =
√
2π σz(r). (208)

We will find this relation particularly useful since the galaxy density profile can
be approximated as Gaussian in z (e.g., Figure 14 of [3]). For the velocity profile
at this point we can only guess.
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Figures
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Figure 1: Galaxy M33 showing the visible matter, the measured azimuthal
velocities and the theoretical calculation using the Gauss-Newton equations.
The difference between ‘expected’ and observations is usually attributed to dark
matter’ (Data from [8], Figure from [40].)
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Figure 2: Three galaxies from McGaugh et al. [31]. Their caption is below
the figure. The black symbols the measured azimuthal velocities, and the solid
lines are the velocities calculated from the observed mass and the Gauss-Newton
equations. The difference is presumed to be due to either ‘Dark Matter’ or the
need for alternative gravity.
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Figure 3: Data for Milky Way from Eilers et al.[11] for Vϕ, Vr and the circular
velocity calculated from Jeans equation along with various solutions to their
versions of the galactic equations. Their caption is below figure. The large
error bars are typical for astronomical data.
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Figure 4: Data for circular velocity for Milky Way from Eilers et al.[11] along
with various solutions to Jeans equation. Their caption is below the figure.
Note that none of the computations come close to the measurements without
including dark matter. The large error bars are typical for astronomical data
and computations.
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Figure 5: Figure showing the streamlines computed from the velocities of Eilers
et al. [12] (reproduced as Figure 3 here) and super-imposed on the Milky Way
image of [39].
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Figure 6: Figure showing the velocity streamlines using data from Figure 2 of
Eilers et al. [11] (reproduced here as Figure 3) along with spiral produced using
constant values of the velocity ratio, Vϕ/Vr = 6.5. The latter is a true log spiral,
ϕs(r)−ϕs(0) = 6.5 ln r/ro. Note that this plot does not include the core region
of the previous plot since these data go out to much larger radius (r = 25 kpc).
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Figure 7: Plot of Vϕ/Vr versus r for data of [11] showing that it appears to be
asymptotically constant at Vϕ/Vr ≈ 6.5.

Figure 8: Profiles of Vϕ(r) and Vr(r) (same as in Figure 2) but also plotting
Vϕ(r)/6.5 on top of Vr(r). This is not a fit to Vr, but a prediction of the
similarity theory which does not seem to have been previously noticed.
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Figure 9: Plots showing how the running mass, Mg(r), for M33 computed form
the measured ⟨ρstars⟩ and ⟨ρgas⟩ increases with radius, r. Data of Corbelli et
al. [9].
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Figure 10: The momentum thickness, zm, for M33 computed using Vϕ data and
the star density data, ⟨ρstars⟩, of Corbelli et al. [9] in equation 34. The data
have been computed using the measured Vϕ and Mg shown in Figure 9 and
computed from the measured ⟨ρ⟩stars only. The straight (red) line indicates the
low r similarity regime for which zm ∝ r; the other similarity regime corresponds
to zm asymptotically constant. The solid black line is an interpolation consistent
with both fits, zm = 2.75(1− exp(−r/1.8)).
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Figure 11: Figure showing how the Vϕ data for M33 of Corbelli et al. [9] can
be reconstructed from equation 34 using a constant zm = 2.75 (dashed red line)
and also using the composite fit zm = 2.75(1 − exp(−r/1.8)) (solid blue line)
shown in Figure 10.
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Figure 12: Log log plot of the Vϕ data for M33 of Corbelli et al. [9] showing two
regions: a r0.4 for low values of r, and a constant asymptote for high r values.
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Figure 13: Plot showing the ratio of ⟨ρstars⟩ to ⟨ρgas⟩ versus radius for M33
using data of Corbelli et al. [9]
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Figure 14: Figure showing the momentum thickness, zm, for the Milky Way
computed using the data of Eilers et al. [11] in equation 34. The solid (blue)
disks are computed using Vϕ only. The jagged line shows zm computed using
Vc, the ‘circular velocity’ of [11]. The red line is a linear fit: zm = 3.6 + 0.4 r.
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Figure 15: Figure for Milky Way showing the measured velocity of Eilers et
al. [11] for Vϕ along with the the velocity back-calculated using the same mass
distribution and the linear fit to zm.
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Figure 16: Figure showing log-log plots of Vϕ and Vr for the Milky Way along
with lines identifying possible power law regions. The dashed lines correspond
to slopes of +1 and -1. The solid lines have slope 0.08.
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Figure 17: Figure showing linear-linear plots of Vϕ and Vr for the Milky Way
along with lines identifying high r similarity region in both. The green line is
the power law of the preceding figure. Also shown are linear fits to Vϕ (blue)
and Vr (orange) for r > 5.
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Figure 18: Plot showing how mass distribution (black line) in Milky Way cor-
responds to similarity region in Vϕ (blue diamonds) and zm (red squares).
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