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Preface These notes have evolved over many years and are offered freely to
students and researchers everywhere. In my own personal history I came from
rather humble beginnings, and was the beneficiary of very generous scholarship
and fellowship support, even with books provided. Without this generosity on the
part of the taxpayers of the State of Maryland, the USA Federal Goverment and
the Johns Hopkins University, I could never be where I am today. So these notes
are my gift to all those who come behind, and especially those who find the cost
of most books to be a real financial struggle. If you reference them, please refer to
the website where others can find them (www.turbulence-online.com). They will
probably never stop evolving, so it might be a good idea to check once in a while
for updated versions.

These notes actually started as book on turbulence I was writing in the early
1980’s, and which was nearly finished and ready to be published. I had taught
turbulence classes for more than a decade (at SUNY/Buffalo) and thought I had
found a way to improve the available texts. Fortunately (or unfortunately for
publication), one day I ended up in class without my notes, and in trying to
answer questions asked to me by the class, I ended up in a very different place
than I expected. Some of the results have been published in various places, and
some are referred to herein. But it was clear to me from the very first moment
that the book had to go: I no longer believed to be true what I was saying in it.
The last 30 years have been an interesting journey as successive waves of students
have asked even more difficult questions, and as I wrestled to figure out what was
true and not true. I have tried in these notes to provide to the best of my ability
an honest account of turbulence and what I think we know for sure and what we
do not. I remember despairing as a student that it seemed that all the problems
were solved, and there was really nothing fundamental left to do. I doubt any
careful reader of these notes will come to that erroneous conclusion. The goal was
not to be comprehensive, so there is much left out. But instead the goal is to
inspire continued study, and to provide a foundation for it.

I have also tried to make these notes fun to read. If you are expecting a totally
serious account, you will probably be disappointd. I have included my opinions
when I thought it would help in understanding, and also anedotes when I could
think of them. The point is that turbulence (like all research) is done by people.
It is probably true that the ones who do the best work are also having the most
fun. I hope the newcomers to the field find that inspirational.

Please do not hesitate to ask me questions or point out places where I have
screwed up. My email address is georgewilliamk@gmail.com. Whenever possible
I will try to respond.
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Chapter 1

The Nature of Turbulence

1.1 The turbulent world around us

The turbulent motion of fluids has captured the fancy of observers of nature for
most of recorded history. From howling winds to swollen floodwaters, the om-
nipresence of turbulence paralyzes continents and challenges our quest for author-
ity over the world around us. But it also delights us with its unending variety of
artistic forms. Subconsciously we find ourselves observing exhaust jets on a frosty
day; we are willingly hypnotized by licking flames in an open hearth. Babbling
brooks and billowing clouds fascinate adult and child alike. From falling leaves
to the swirls of cream in steaming coffee, turbulence constantly competes for our
attention.

Turbulence by its handiwork immeasurably enriches the lives of even those who
cannot comprehend its mysteries. Art museums are filled with artists attempts to
depict turbulence in the world around us. The classic sketch of Italian renaissance
artist and engineer, Leonardo da Vinci, shown in Figure 1.1 represents both art
and early science. And as the tongue-in-cheek poem below by Corrsin (one of
the turbulence greats of the past century) shows, even for those who try, the
distinction between art and research is often difficult to make.

SONNET TO TURBULENCE
by

S. Corrsin1

(For Hans Liepmann 2 on the occasion of his 70th birthday,
with apologies to Bill S. and Liz B.B.)

Shall we compare you to a laminar flow?
You are more lovely and more sinuous.

1Stan Corrsin was a famous and much beloved turbulence researcher and professor at the
Johns Hopkins University.

2Hans Liepmann was another famous turbulence researcher and professor at Cal Tech, who
was Corrsin’s Ph.D. dissertation advisor.

9
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Rough winter winds shake branches free of snow,
And summer’s plumes churn up in cumulus.

How do we perceive you? Let me count the ways.
A random vortex field with strain entwined.
Fractal? Big and small swirls in the maze
May give us paradigms of flows to find.

Orthonormal forms non-linearly renew
Intricate flows with many free degrees
Or, in the latest fashion, merely few —
As strange attractor. In fact, we need Cray 3’s3.

Experiment and theory, unforgiving;
For serious searcher, fun ... and it’s a living!

Figure 1.1: Leonardo da Vinci’s observation of turbulent flow: Drawing of a free
water jet issuing from a square hole into a pool (courtesy of eFluids.com).

These lectures will mostly deal with the equations used to describe the me-
chanics of turbulence. It is only equations which can give us the hope of predicting
turbulence. But your study of this subject will be missing a great deal if this is
all you learn. The advantage of studying turbulence is that you truly can see
it almost everywhere as it mixes and diffuses, disrupts and dissipates the world
around us.

So teach yourself to observe the natural and manmade processes around you.
Not only will your life become more interesting, but your learning will be enhanced
as well. Be vigilant. Whenever possible relate what you are learning to what you
see. Especially note what you do not understand, and celebrate when and if you
do. Then you will find that the study of turbulence really is fun.

3At the time this poem was written, the Cray 2 was the world’s most powerful computer.
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1.2 What is turbulence?

Turbulence is that state of fluid motion which is characterized by apparently
random and chaotic three-dimensional vorticity. When turbulence is present,
it usually dominates all other flow phenomena and results in increased energy
dissipation, mixing, heat transfer, and drag. If there is no three-dimensional
vorticity, there is no real turbulence. The reasons for this will become clear later;
but briefly, it is ability to generate new vorticity from old vorticity that is essential
to turbulence. And only in a three-dimensional flow is the necessary stretching
and turning of vorticity by the flow itself possible.

For a long time scientists were not really sure in which sense turbulence is
“random”, but they were pretty sure it was. Like anyone who is trained in physics,
we believe the flows we see around us must be the solution to some set of equations
which govern. (This is after all what mechanics is about — writing equations to
describe and predict the world around us.) But because of the nature of the
turbulence, it wasn’t clear whether the equations themselves had some hidden
randomness, or just the solutions. And if the latter, was it something the equations
did to them, or a consequence of the initial conditions?

All of this began to come into focus as we learned about the behavior of
strongly non-linear dynamical systems in the past few decades. Even simple non-
linear equations with deterministic solutions and prescribed initial conditions were
found to exhibit chaotic and apparently random behavior. In fact, the whole new
field of chaos was born in the 1980’s4, complete with its new language of strange
attractors, fractals, and Lyapunov exponents. Such studies now play a major role
in analyzing dynamical systems and control, and in engineering practice as well.

Figure 1.2: Turbulence in a water jet. Photo from Dimotakis, Miake-Lye and
Papantoniou, Phys. Flds., 26 (11), 3185 – 3192.

Turbulence is not really chaos, at least in the sense of the word that the dy-
namical systems people use, since turbulent flows are not only time-dependent
but space dependent as well. But as even the photos of simple turbulent jets

4The delightful book by James Gleik “Chaos: the making of a new science” provides both
interesting reading and a mostly factual account.
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18585400

(    = smoke-wire location)

x/θ

Figure 1.3: Axisymmetric wakes from four different generators. Photo from S.C.
Cannon, Ph.D. Dissertation., U.of Ariz, 1991.

and wakes shown in Figures 1.2 and 1.3 make clear, turbulence has many features
that closely resemble chaos. Obvious ones include spatial and temporal intermit-
tency, dissipation, coherent structures, sensitive dependence of the instantaneous
motions on the initial and upstream conditions, and even the near-fractal distri-
bution of scales. In fact, the flows we see themselves bear an uncanny resemblance
to the phase plane plots of strange attractors. No one would ever confuse a jet
with a wake, but no two wakes seem to be quite alike either.

Because of the way chaos has changed our world view, most turbulence re-
searchers now believe the solutions of the fluid mechanical equations to be de-
terministic. Just like the solutions of non-linear dynamical systems, we believe
turbulent solutions to be determined (perhaps uniquely) by their boundary and
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initial conditions5. And like non-linear dynamical systems, these deterministic so-
lutions of the non-linear fluid mechanics equations exhibit behavior that appears
for all intents and purposes to be random. We call such solutions turbulent, and
the phenomenon turbulence. Because of this chaotic-like and apparently random
behavior of turbulence, we will need statistical techniques for most of our study
of turbulence.

This is a course about the mechanical mysteries of turbulence. It will attempt
to provide a perspective on our quest to understand it. The lack of a satisfactory
understanding of turbulence presents one of the great remaining fundamental
challenges to scientists — and to engineers as well, since most technologically
important flows are turbulent. The advances in understanding over the past few
decades, together with the advent of large scale computational and experimental
capabilities, present the scientist and engineer with the first real capabilities for
understanding and managing turbulent flows. As a result, this is a really wonderful
time to study this subject.

1.3 Why study turbulence?

There really are the TWO reasons for studying turbulence — engineering and
physics! And they are not necessarily complementary, at least in the short run.

Certainly a case can be made that we don’t know enough about turbulence to
even start to consider engineering problems. To begin with (as we shall see very
quickly over the next few lectures), we always have fewer equations than unknowns
in any attempt to predict anything other than the instantaneous motions. This
is the famous turbulence closure problem.

Of course, closure is not a problem with the so-called DNS (Direct Numerical
Simulations) in which we numerically produce the instantaneous motions in a
computer using the exact equations governing the fluid. Unfortunately we won’t
be able to perform such simulations for real engineering problems until at least
a few hundred generations of computers have come and gone. And this won’t
really help us too much, since even when we now perform a DNS simulation of
a really simple flow, we are already overwhelmed by the amount of data and its
apparently random behavior. This is because without some kind of theory, we
have no criteria for selecting from it in a single lifetime what is important.

The engineer’s counter argument to the scientists’ lament above is:

• airplanes must fly,

• weather must be forecast,

• sewage and water management systems must be built,

5If it comes as a surprise to you that we don’t even know this for sure, you might be even
more surprised to learn that there is a million dollar prize for the person who proves it.
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• society needs ever more energy-efficient hardware and gadgets.

Thus, the engineer argues, no matter the inadequate state of our knowledge, we
have the responsibility as engineers to do the best we can with what
we have. Who, considering the needs, could seriously argue with this? Almost
incredibly — some physicists do!

The same argument happens in reverse as well. Engineers can become so
focused on their immediate problems they too lose the big picture. The famous
British aerodynamicist M. Jones captured this well when he said,

“A successful research enables problems which once seemed hopelessly
complicated to be expressed so simply that we soon forget that they
ever were problems. Thus the more successful a research, the more
difficult does it become for those who use the result to appreciate the
labour which has been put into it. This perhaps is why the very
people who live on the results of past researches are so often
the most critical of the labour and effort which, in their time,
is being expended to simplify the problems of the future”6

It seems evident then that there must be at least two levels of assault on
turbulence. At one level, the very nature of turbulence must be explored. At the
other level, our current state of knowledge — however inadequate it might be —
must be stretched to provide engineering solutions to real problems.

The great danger we face is of being deceived by the successes and good fortune
of our “engineering solutions” into thinking we really understand the “physics”.
But the real world has a way of shocking us back to reality when our “tried and
tested” engineering model fails miserably on a completely new problem for which
we have not calibrated it. This is what happens when we really don’t understand
the “physics” behind what we are doing. Hopefully this course will get you excited
about both the physics and the applications, so you won’t fall into this trap.

1.4 The cost of our ignorance

It is difficult to place a price tag on the cost of our limited understanding of
turbulence, but it requires no imagination at all to realize that it must be enor-
mous. Try to estimate, for example, the aggregate cost to society of our limited
turbulence prediction abilities which result in inadequate weather-forecasts alone.
Or try to place a value on the increased cost to the consumer of the need of the
designer of virtually every fluid-thermal system —from heat exchangers to hyper-
sonic planes— to depend on empiricism and experimentation, with the resulting
need for abundant safety factors and non-optimal performance by all but the crud-
est measures. Or consider the frustration to engineers and cost to management of
the never-ending need for “code-validation” experiments every time a new class

6Jones, B.M. (1934) ”Stalling”, The Wilbur Wright Memorial Lecture”. J. Aeron. Sci
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of flows is encountered or major design change contemplated. The whole of idea
of “codes” in the first place was to be able to evaluate designs without having to
do experiments or build prototypes.

Some argue that our quest for knowledge about turbulence should be driven
solely by the insatiable scientific curiosity of the researcher, and not by the ap-
plications. Whatever the intellectual merits of this argument, it is impossible
to consider the vastness and importance of the applications and not recognize a
purely financial imperative for fundamental turbulence research. The problem is,
of course, that the cost of our ignorance is not confined to a single large need or
to one segment of society, but is spread across the entire economic spectrum of
human existence. If this were not the case, it would be easy to imagine federal
involvement at the scale of America’s successful moon venture or the international
space station, or at very least a linear accelerator or a Galileo telescope. Such a
commitment of resources would certainly advance more rapidly our understand-
ing.

But the turbulence community — those who study and those who use the
results — have failed ourselves to recognize clearly the need and nature of what
we really do. Thus in turbulence, we have been forced to settle for far, far less
than required to move us forward very fast, or maybe at all. Hopefully you will
live to see this change. Or even better, perhaps you will be among the ones who
change it.

1.5 What do we really know for sure?

Now even from these brief remarks, you have probably already figured out that
the study of turbulence might be a little different than most of the subjects you
have studied. This is a subject we are still studying. Now not everyone who
teaches courses on this subject (and especially those who write books about it)
will tell you this, but the truth is: we really don’t know a whole lot for sure about
turbulence. And worse, we even disagree about what we think we know!

Now, as you will learn in this course (or maybe heard somewhere before),
there are indeed some things some researchers think we understand pretty well
— like for example the Kolmogorov similarity theory for the dissipative scales
and the Law of the Wall for wall-bounded flows, ideas you will soon encounter.
These are based on assumptions and logical constructions about how we believe
turbulence behaves in the limit of infinite Reynolds number. But even these ideas
have never really been tested in controlled laboratory experiments in the limits
of high Reynolds number, because no one has ever had the large scale facilities
required to do so.7

It seems to be a characteristic of humans (and contrary to popular belief,
scientists and engineers are indeed human) that we tend to accept ideas which

7The proposal to build the Nordic Wind Tunnel at Chalmers back at the beginning of this
millenium was an attempt to fill this gap.
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have been around a while as fact, instead of just working hypotheses that are still
waiting to be tested. One can reasonably argue that the acceptance of most ideas
in turbulence is perhaps more due to the time lapsed since they were proposed
and found to be in reasonable agreement with a limited data base, than that
they have been subjected to experimental tests over the range of their assumed
validity.8 Thus it might be wise to view most ‘established’ laws and theories of
turbulence as more like religious creeds than matters of fact.

The whole situation is a bit analogous to the old idea that the sun and stars
revolved around the earth — it was a fine idea, and even good today for naviga-
tional purposes. The only problem was that one day someone (Copernicus, Brahe
and Galileo among them) looked up and realized it wasn’t true. So it may be with
a lot of what we believe today to be true about turbulence — some day you may
be the one to look at evidence in a new way and decide that things we thought
to be true are wrong.

1.6 Our personal adventure

This is a turbulence course. You are enthused I hope, at least for the moment, to
learn about turbulence. But since no two people could be in complete agreement
about something like turbulence about which we know so little, this will be perhaps
a pretty unusual course. I will try really hard to be honest in what I tell you.
Even so, you should not trust me entirely, nor anyone else for that matter. It
will really be up to you to distinguish among what you wish to consider as fact,
working hypothesis, or to dismiss as fantasy. It is also very important that you
try to keep track of which is which in your mind, and be willing to let ideas move
from one category to the other as your understanding and information grows.

Like different artists painting the same scene, the pictures you and I paint will
as much reflect our own personalities and histories, as the facts. But, like real
works of art, both my picture of turbulence and yours might enable others to see
things that they would have otherwise missed. This does not imply, however, that
there are not real truths to be found — only that we at this point can not say
with confidence what they are. Above all, we must not forget that we seek truth
and understanding, the first step toward which is learning and admitting what we
do not know.

Of course we will try to never completely forget that there are real problems
to be solved. Throughout these lectures I will try to use many illustrations from
my own experience. But the real goal is to help you develop enough fundamental
understanding that you can sort through the many options available to you for
the particular problems you will encounter in the real world. And maybe, with
a little luck, you will even be able to make your own contribution to the state of
our knowledge about turbulence. But at very least I hope the result of this course

8This point was made rather forcefully by Robert R. Long, (Professor Emeritus, Johns Hop-
kins University) in his famous footnoted Journal of Fluid Mechanics paper in 1982.
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will be to make you open to new ideas, however uncomfortable they make make
you feel initially.

I encourage you to not be lazy. Too many study turbulence hoping for easy
and quick answers, general formulas, and word pictures. The fact is the study
of turbulence is quite difficult, and demands serious commitment on the part of
the student. The notations are sometimes complex, and they must be this way
to succinctly express the real physics. The equations themselves are extremely
difficult, yet only by using them to express ideas can we say we understand the
physics. Word pictures and sketches can help us, but they cannot be extrapolated
to real problems. Of course we must resort to simplifications and at times even
heuristic reasoning to understand what our equations are telling us. But be careful
to never confuse these simplifications and pedagogical tools with the real flows you
are likely to encounter. Sometimes they are useful in understanding, yet sometimes
they can be misleading. There is no substitute for actually looking at a flow and
analyzing exactly which terms in the governing equations are responsible for what
you see.

If this all seems a bit discouraging, look at it this way. If the turbulence
problem were easy, it would have been solved years ago. Like applying Newton’s
law (or even relativity) to point masses with known forces, every engineer could do
turbulence on his laptop.9 The turbulence problem has been worked on for over
a century by many very smart people. There has certainly been progress, some
would even say great progress. But not enough to make the study of turbulence
easy. This problem is difficult. Even so, the equations require no more skills than
undergraduate mathematics — just a lot of it. So be of brave heart and persevere.
Do not quit before the end of an analysis. Actually carrying things out yourself
is the only road to complete understanding. The difference between the success
and failure of your effort will be almost entirely measured by your willingness to
spend time and think difficult and complex thoughts. In other words, you can’t
be lazy and learn turbulence.

1.7 A brief outline

Now for some specifics: this book will provide an introduction to the fundamentals
of turbulent flow. The focus will be on understanding the averaged equations of
motion and the underlying physics they contain. The goal will be to provide
you with the tools necessary to continue the study of turbulence, whether in the
university or industrial setting. Topics covered include: what is turbulence; the
Reynolds-averaged equations; instability and transition; simple closure models;
the Reynolds stress equations; simple decaying turbulence; homogeneous shear
flow turbulence; free turbulent shear flows; wall-bounded turbulent flows; multi-
point and spectral considerations; and multi-point similarity in turbulence.

9Some indeed might now think this is possible, and for some very simple problems, it is.
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Study questions for Chapter 1
1. Observe your surroundings carefully and identify at least ten different tur-

bulent phenomena for which you can actually see flow patterns. Write down
what you find particularly interesting about each.

2. Talk to people (especially engineers) you know (or even don’t know partic-
ularly well) about what they think the turbulence problem is. Decide for
yourself whether they have fallen into the trap that Professor Jones talks
about in the quotation used in this text.

3. In 1990 I wrote an ASME paper entitled “The nature of turbulence”. (You
can download a copy for yourself from the TRL website.) In this paper I
suggested that most turbulence researchers wouldn’t recognize a solution to
the turbulence problem, even if they stumbled across it. My idea was that if
you don’t know what you are looking for, you aren’t likely to know when you
find it. What do you think about this, especially in light of your interviews
above?

4. Some believe that computers have already (or at least soon will) make ex-
periments in turbulence unnecessary. The simplest flow one can imagine of
sufficiently high Reynolds number to really test any of the theoretical ideas
about turbulence will require a computational box of approximately (105)3,
because of the large range of scales needed. The largest simulation to-date
uses a computational box of (103)3, and takes several thousand hours of
processor time. Assuming computer capacity continues to double every 1.5
years, calculate how many years it will be before even this simple experiment
can be done in a computer.

5. The famous aerodynamicist Theordore von Karman once said: “A scientist
studies what is; an engineer creates what has never been.” Think about this
in the context of the comments in Chapter 1, and about the differing goals
of the scientist and the engineer. Then try to figure out how you can plot a
life course that will not trap you into thinking your own little corner of the
world is all there is.

6. The instructor has essentially told you that you really should believe nothing
he says (or anyone else says, for that matter), just because he (or they) said
it. Think about what the scientific method really is, and how you will apply
it to your study of the material in this course.

7. Think about the comments that ideas become accepted simply because they
have been around awhile without being disproved. Can you think of exam-
ples from history, or from your own personal experience? Why do you think
this happens? And how can we avoid it, at least in our work as scientists
and engineers?



Chapter 2

The Elements of Statistical
Analysis

Original version February 26, 1987, last revised 11 Feb 2010.

2.1 Foreword

Much of the study of turbulence requires statistics and stochastic processes, sim-
ply because the instantaneous motions are too complicated to understand. This
should not be taken to mean that the governing equations (usually the Navier-
Stokes equations) are stochastic. Even simple non-linear equations can have de-
terministic solutions that look random. In other words, even though the solutions
for a given set of initial and boundary conditions can be perfectly repeatable and
predictable at a given time and point in space, it may be impossible to guess from
the information at one point or time how it will behave at another (at least with-
out solving the equations). Moreover, a slight change in the initial or boundary
conditions may cause large changes in the solution at a given time and location;
in particular, changes that we could not have anticipated.

In this chapter we shall introduce the simple idea of the ensemble average.
Most of the statistical analyses of turbulent flows are based on the idea of an
ensemble average in one form or another. In some ways this is rather inconvenient,
since it will be obvious from the definitions that it is impossible to ever really
measure such a quantity. Therefore we will spend the last part of this chapter
talking about how the kinds of averages we can compute from data correspond
to the hypothetical ensemble average we wish we could have measured. In later
chapters we shall introduce more statistical concepts as we require them. But the
concepts of this chapter will be all we need to begin a discussion of the averaged
equations of motion in Chapter 3.

19
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2.2 The Ensemble and Ensemble Averages

2.2.1 The mean (or ensemble) average

The concept of an ensemble average is based upon the existence of independent
statistical events. For example, consider a number of individuals who are simul-
taneously flipping unbiased coins. If a value of one is assigned to a head and the
value of zero to a tail, then the arithmetic average of the numbers generated is
defined as:

XN =
1

N
Σxn (2.1)

where our nth flip is denoted as xn and N is the total number of flips.
Now if all the coins are the same, it doesn’t really matter whether we flip

one coin N times, or N coins a single time. The key is that they must all be
independent events — meaning the probability of achieving a head or tail in a
given flip must be completely independent of what happens in all the other flips.
Obviously we can’t just flip one coin once and count it N times; these clearly
would not be independent events.

Exercise Carry out an experiment where you flip a coin 100 times in groups of
10 flips each. Compare the values you get for X10 for each of the 10 groups, and
note how they differ from the value of X100.

Unless you had a very unusual experimental result, you probably noticed that
the value of the X10’s was also a random variable and differed from ensemble to
ensemble. Also the greater the number of flips in the ensemble, the closer you got
to XN = 1/2. Obviously the bigger N , the less fluctuation there is in XN .

Now imagine that we are trying to establish the nature of a random variable,
x. The nth realization of x is denoted as xn. The ensemble average of x is denoted
as X (or 〈x〉), and is defined as

X = 〈x〉 ≡ lim
N→∞

1

N

N∑
n=1

xn (2.2)

Obviously it is impossible to obtain the ensemble average experimentally, since
we can never have an infinite number of independent realizations. The most we
can ever obtain is the arithmetic mean for the number of realizations we have.
For this reason the arithmetic mean can also referred to as the estimator for the
true mean or ensemble average.

Even though the true mean (or ensemble average) is unobtainable, nonetheless,
the idea is still very useful. Most importantly, we can almost always be sure the
ensemble average exists, even if we can only estimate what it really is. Note that
in some particularly difficult cases this may require imagining that we can sum our
random variable at a given instant and time across an infinite number of universes
which are governed by the same statistical rules. So the fact of the existence of
the ensemble average does not always mean that it is easy to obtain in practice.
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Nonetheless, unless stated otherwise, all of the theoretical deductions in this book
will use this ensemble average; and therefore are completely general. Obviously
this will mean we have to account for these “statistical differences” between true
means and estimates of means when comparing our theoretical results to actual
measurements or computations.

In general, the xn could be realizations of any random variable. The X defined
by equation 2.2 represents the ensemble average of it. The quantityX is sometimes
referred to as the expected value of the random variable x, or even simply its mean.

For example, the velocity vector at a given point in space and time, ~x, t, in a
given turbulent flow can be considered to be a random variable, say ui(~x, t). If

there were a large number of identical experiments so that the u
(n)
i (~x, t) in each of

them were identically distributed, then the ensemble average of u
(n)
i (~x, t) would

be given by

〈ui(~x, t)〉 = Ui(~x, t) ≡ lim
N→∞

1

N

N∑
n=1

u
(n)
i (~x, t) (2.3)

Note that this ensemble average, Ui(~x, t), will, in general, vary with the inde-
pendent variables ~x and t. It will be seen later that under certain conditions
the ensemble average is the same as the average which would be generated by
averaging in time, or even space. But even when a time (or space) average is
not meaningful, however, the ensemble average can still be defined; e.g., as in an
non-stationary or periodic flow. Only ensemble averages will be used in the de-
velopment of the turbulence equations in this book unless otherwise stated. Thus
the equations derived will be completely general, and quite independent of the
particular nature of the flow, or even its statistical character.

2.2.2 Fluctuations about the mean

It is often important to know how a random variable is distributed about the
mean. For example, Figure 2.1 illustrates portions of two random functions of
time which have identical means, but are obviously members of different ensembles
since the amplitudes of their fluctuations are not distributed the same. It is
possible to distinguish between them by examining the statistical properties of
the fluctuations about the mean (or simply the fluctuations) defined by:

x′ = x−X (2.4)

It is easy to see that the average of the fluctuation is zero, i.e.,

〈x′〉 = 0 (2.5)

On the other hand, the ensemble average of the square of the fluctuation is
not zero. In fact, it is such an important statistical measure we give it a special
name, the variance, and represent it symbolically by either var[x] or 〈(x′)2〉. The
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Figure 2.1: A typical random function of time with non-zero mean value.

variance is defined as:

var[x] ≡ 〈(x′)2〉 = 〈[x−X]2〉 (2.6)

= lim
N→∞

1

N

N∑
n=1

[xn −X]2 (2.7)

Note that the variance, like the ensemble average itself, can never really be mea-
sured, since it would require an infinite number of members of the ensemble.

It is straightforward to show from equation 2.2 that the variance in equation 2.6
can be written as:

var[x] = 〈x2〉 −X2 (2.8)

Thus the variance is the second-moment minus the square of the first-moment (or
mean). In this naming convention, the ensemble mean is the first moment.

Exercise Use the definitions of equations 2.2 and 2.7 to derive equation 2.8.

The variance can also referred to as the second central moment of x. The
word central implies that the mean has been subtracted off before squaring and
averaging. The reasons for this will be clear below. If two random variables are
identically distributed, then they must have the same mean and variance.

The variance is closely related to another statistical quantity called the stan-
dard deviation or root mean square (rms) value of the random variable x,which is
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Figure 2.2: Two random functions of time having the same mean and variance,
but very different higher moments.

denoted by the symbol, σx. Thus,

σx ≡ (var[x])1/2 (2.9)

or σ2
x = var[x].

2.2.3 Higher moments

Figure 2.2 illustrates two random variables of time which have the same mean
and also the same variances, but clearly they are still quite different. It is useful,
therefore, to define higher moments of the distribution to assist in distinguishing
these differences.

The m-th moment of the random variable is defined as:

〈xm〉 = lim
N→∞

1

N

N∑
n=1

xm
n (2.10)

It is usually more convenient to work with the central moments defined by:

〈(x′)m〉 = 〈(x−X)m〉 = lim
N→∞

1

N

N∑
n=1

[xn −X]m (2.11)
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The central moments give direct information on the distribution of the values of
the random variable about the mean. It is easy to see that the variance is the
second central moment (i.e., m = 2).

2.3 Probability

2.3.1 The histogram and probability density function

The frequency of occurrence of a given amplitude (or value) from a finite num-
ber of realizations of a random variable can be displayed by dividing the range
of possible values of the random variables into a number of slots (or windows).
Since all possible values are covered, each realization fits into only one window.
For every realization a count is entered into the appropriate window. When all
the realizations have been considered, the number of counts in each window is
divided by the total number of realizations. The result is called the histogram
(or frequency of occurrence diagram). From the definition it follows immediately
that the sum of the values of all the windows is exactly one.

The shape of a histogram depends on the statistical distribution of the random
variable, but it also depends on the total number of realizations, N , and the size
of the slots, ∆c. The histogram can be represented symbolically by the function
Hx(c,∆c,N) where c ≤ x < c + ∆c, ∆c is the slot width, and N is the number
of realizations of the random variable. Thus the histogram shows the relative
frequency of occurrence of a given value range in a given ensemble. Figure 2.3
illustrates a typical histogram. If the size of the sample is increased so that the
number of realizations in each window increases, the diagram will become less
erratic and will be more representative of the actual probability of occurrence of
the amplitudes of the signal itself, as long as the window size is sufficiently small.

If the number of realizations, N , increases without bound as the window size,
∆c, goes to zero, the histogram divided by the window size goes to a limiting
curve called the probability density function, Bx(c). That is,

Bx(c) ≡ lim
N → ∞
∆c → 0

H(c,∆c,N)/∆c (2.12)

Note that as the window width goes to zero, so does the number of realizations
which fall into it, NH. Thus it is only when this number (or relative number) is
divided by the slot width that a meaningful limit is achieved.

The probability density function (or pdf) has the following properties:

• Property 1:
Bx(c) > 0 (2.13)

always.
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Figure 2.3: Histogram, together with it’s limiting probability density function.

• Property 2:
Prob{c < x < c+ dc} = Bx(c)dc (2.14)

where Prob{ } is read “the probability that”.

• Property 3:

Prob{c < x} =
∫ x

−∞
Bx(c)dc (2.15)

• Property 4: ∫ ∞

−∞
Bx(x)dx = 1 (2.16)

The condition imposed by property (1) simply states that negative probabilities
are impossible, while property (4) assures that the probability is unity that a
realization takes on some value. Property (2) gives the probability of finding the
realization in a interval around a certain value, while property (3) provides the
probability that the realization is less than a prescribed value. Note the necessity
of distinguishing between the running variable, x, and the integration variable, c,
in equations 2.14 and 2.15.

Since Bx(c)dc gives the probability of the random variable x assuming a value
between c and c + dc, any moment of the distribution can be computed by inte-
grating the appropriate power of x over all possible values. Thus the n-th moment
is given by:

〈xn〉 =
∫ ∞

−∞
cnBx(c)dc (2.17)
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Exercise: Show (by returning to the definitions) that the value of the moment
determined in this manner is exactly equal to the ensemble average defined earlier
in equation 2.10. (Hint: use the definition of an integral as a limiting sum.)

If the probability density is given, the moments of all orders can be determined.
For example, the variance can be determined by:

var{x} = 〈(x−X)2〉 =
∫ ∞

−∞
(c−X)2Bx(c)dc (2.18)

The central moments give information about the shape of the probability den-
sity function, and vice versa. Figure 2.4 shows three distributions which have the
same mean and standard deviation, but are clearly quite different. Beneath them
are shown random functions of time which might have generated them. Distribu-
tion (b) has a higher value of the fourth central moment than does distribution
(a). This can be easily seen from the definition

〈(x−X)4〉 =
∫ ∞

−∞
(c−X)4Bx(c)dc (2.19)

since the fourth power emphasizes the fact that distribution (b) has more weight
in the tails than does distribution (a).

It is also easy to see that because of the symmetry of pdf’s in (a) and (b),
all the odd central moments will be zero. Distributions (c) and (d), on the other
hand, have non-zero values for the odd moments, because of their asymmetry. For
example,

〈(x−X)3〉 =
∫ ∞

−∞
(c−X)3Bx(c)dc (2.20)

is equal to zero if Bx is an even function.

2.3.2 The probability distribution

Sometimes it is convenient to work with the probability distribution instead
of with the probability density function. The probability distribution is defined
as the probability that the random variable has a value less than or equal to a
given value. Thus from equation 2.15, the probability distribution is given by

Fx(c) = Prob{x < c} =
∫ c

−∞
Bx(c

′)dc′ (2.21)

Note that we had to introduce the integration variable, c′, since c occurred in the
limits.

Equation 2.21 can be inverted by differentiating by c to obtain

Bx(c) =
dFx

dc
(2.22)
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Figure 2.4: Relation of skewness to the shape of the pdf and nature of the signal.
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2.3.3 Gaussian (or normal) distributions

One of the most important pdf’s in turbulence is the Gaussian or Normal distri-
bution defined by

BxG(c) =
1√
2πσx

e−(c−X)2/2σ2
x (2.23)

where X is the mean and σx is the standard derivation. The factor of 1/
√
2πσx

insures that the integral of the pdf over all values is unity as required. It is easy
to prove that this is the case by completing the squares in the integration of the
exponential (see problem 2.2).

The Gaussian distribution is unusual in that it is completely determined by its
first two moments, X and σ. This is not typical of most turbulence distributions.
Nonetheless, it is sometimes useful to approximate turbulence as being Gaussian,
often because of the absence of simple alternatives.

It is straightforward to show by integrating by parts that all the even central
moments above the second are given by the following recursive relationship,

〈(x−X)n〉 = (n− 1)(n− 3)...3.1σn
x (2.24)

Thus the fourth central moment is 3σ4
x, the sixth is 15σ6

x, and so forth.

Exercise: Prove this.

The probability distribution corresponding to the Gaussian distribution can
be obtained by integrating the Gaussian pdf from −∞ to x = c; i.e.,

FxG(c) =
1√
2πσx

∫ c

−∞
e−(c′−X)2/2σ2

xdc′ (2.25)

The integral is related to the erf-function tabulated in many standard tables and
function subroutines, but usually with the independent variable normalized by
σx; i.e., c

′ = c/σx. Alternatively we can subtract FxG(c) from unity to obtain the
probability that x ≥ c as 1− FxG(c). This is related to the complementary error
function, erfc(c), also usually easily available.

2.3.4 Skewness and kurtosis

Because of their importance in characterizing the shape of the pdf, it is useful
to define scaled (or normalized) versions of third and fourth central moments:
the skewness and kurtosis respectively. The skewness is defined as third central
moment divided by the three-halves power of the second; i.e.,

S =
〈(x−X)3〉

〈(x−X)2〉3/2
(2.26)

The kurtosis is defined as the fourth central moment divided by the square of the
second; i.e.,

K =
〈(x−X)4〉
〈(x−X)2〉2

(2.27)
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Both these are easy to remember if you note the S and K must be dimensionless.

The pdf’s in Figure 2.4 can be distinguished by means of their skewness and
kurtosis. The random variable shown in (b) has a higher kurtosis than that in (a).
Thus the kurtosis can be used as an indication of the tails of a pdf, a higher kurtosis
indicating that relatively larger excursions from the mean are more probable. The
skewnesses of (a) and (b) are zero, whereas those for (c) and (d) are non-zero.
Thus, as its name implies, a non-zero skewness indicates a skewed or asymmetric
pdf, which in turn means that larger excursions in one direction are more probable
than in the other. For a Gaussian pdf, the skewness is zero and the kurtosis is
equal to three (see problem 2.4). The flatness factor, defined as (K − 3), is
sometimes used to indicate deviations from Gaussian behavior.

Exercise: Prove that the skewness and kurtosis of a Gaussian distributed random
variable are 0 and 3 respectively.

2.4 Multivariate Random Variables

2.4.1 Joint pdfs and joint moments

Often it is important to consider more than one random variable at a time. For
example, in turbulence the three components of the velocity vector are interre-
lated and must be considered together. In addition to the marginal (or single
variable) statistical moments already considered, it is necessary to consider the
joint statistical moments.

For example if u and v are two random variables, there are three second-order
moments which can be defined 〈u2〉, 〈v2〉, and 〈uv〉. The product moment 〈uv〉 is
called the cross-correlation or cross-covariance. The moments 〈u2〉 and 〈v2〉 are
referred to as the covariances, or just simply the variances. Sometimes 〈uv〉 is
also referred to as the correlation.

In a manner similar to that used to build-up the probability density function
from its measurable counterpart, the histogram, a joint probability density
function (or jpdf), Buv, can be built-up from the joint histogram. Figure 2.5
illustrates several examples of jpdf’s which have different cross-correlations. For
convenience the fluctuating variables u′ and v′ can be defined as

u′ = u− U (2.28)

v′ = v − V (2.29)

where as before capital letters are used to represent the mean values. Clearly the
fluctuating quantities u′ and v′ are random variables with zero mean.

A positive value of 〈u′v′〉 indicates that u′ and v′ tend to vary together. A
negative value indicates that when one variable is increasing the other tends to be
decreasing. A zero value of 〈u′v′〉 indicates that there is no correlation between
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Figure 2.5: Contours of constant probability for four different joint probability
density functions. Try to figure out what the moments would be for each and how
they would differ.
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u′ and v′. As will be seen below, it does not mean that they are statistically
independent.

It is sometimes more convenient to deal with values of the cross-variances
which have been normalized by the appropriate variances. Thus the correlation
coefficient is defined as:

ρuv ≡
〈u′v′〉

[〈u′2〉〈v′2〉]1/2
(2.30)

The correlation coefficient is bounded by plus or minus one, the former represent-
ing perfect correlation and the latter perfect anti-correlation.

As with the single-variable pdf, there are certain conditions the joint proba-
bility density function must satisfy. If Buv(c1, c2) indicates the jpdf of the random
variables u and v, then:

• Property 1:

Buv(c1, c2) > 0 (2.31)

always.

• Property 2:

Prob{c1 < u < c1 + dc1, c2 < v < c2 + dc2} = Buv(c1, c2)dc1, dc2 (2.32)

• Property 3: ∫ ∞

−∞

∫ ∞

−∞
Buv(c1, c2)dc1dc2 = 1 (2.33)

• Property 4: ∫ ∞

−∞
Buv(c1, c2)dc2 = Bu(c1) (2.34)

where Bu is a function of c1 only.

• Property 5: ∫ ∞

−∞
Buv(c1, c2)dc1 = Bv(c2) (2.35)

where Bv is a function of c2 only.

The functions Bu and Bv are called the marginal probability density functions,
and they are simply the single variable pdf’s defined earlier. The subscript is used
to indicate which variable is left after the others are integrated out. Note that
Bu(c1) is not the same as Buv(c1, 0). The latter is only a slice through the c2-axis,
while the marginal distribution is weighted by the integral of the distribution of
the other variable. Figure 2.6 illustrates these differences.
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Figure 2.6: Surface representation of a joint probability density function.

If the joint probability density function is known, the joint moments of all
orders can be determined. Thus the m,n-th joint moment is

〈umvn〉 =
∫ ∞

−∞

∫ ∞

−∞
cm1 c

n
2Buv(c1, c2)dc1dc2 (2.36)

where m and n can take any value. The corresponding central-moment is:

〈(u− U)m(v − V )n〉 =
∫ ∞

−∞

∫ ∞

−∞
(c1 − U)m(c2 − V )nBuv(c1, c2)dc1dc2 (2.37)

In the preceding discussions, only two random variables have been considered.
The definitions, however, can easily be generalized to accommodate any number
of random variables. In addition, the joint statistics of a single random vari-
able at different times or at different points in space could be considered. This
will be discussed later when stationary and homogeneous random processes are
considered.

2.4.2 The bi-variate normal (or Gaussian) distribution

If u and v are normally distributed random variables with standard deviations
given by σu and σv, respectively, with correlation coefficient ρuv, then their joint
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probability density function is given by

BuvG(c1, c2) =
1

2πσuσv

exp

[
(c1 − U)2

2σ2
u

+
(c2 − V )2

2σ2
v

− ρuv
c1c2
σuσv

]
(2.38)

This distribution is plotted in Figure 2.7 for several values of ρuv where u and v
are assumed to be identically distributed (i.e., 〈u2〉 = 〈v2〉).

It is straightforward to show (by completing the square and integrating) that
this yields the single variable Gaussian distribution for the marginal distributions
(see problem 2.5). It is also possible to write a multivariate Gaussian probability
density function for any number of random variables.

Exercise: Prove that equation 2.23 results from integrating out the dependence
of either variable using equations 2.34 or 2.35.

2.4.3 Statistical independence and lack of correlation

Definition: Statistical Independence Two random variables are said to be
statistically independent if their joint probability density is equal to the product
of their marginal probability density functions. That is,

Buv(c1, c2) = Bu(c1)Bv(c2) (2.39)

It is easy to see that statistical independence implies a complete lack of corre-
lation; i.e., ρuv ≡ 0. From the definition of the cross-correlation,

〈(u− U)(v − V )〉 =
∫ ∞

−∞

∫ ∞

−∞
(c1 − U)(c2 − V )Buv(c1, c2)dc1dc2

=
∫ ∞

−∞

∫ ∞

−∞
(c1 − U)(c2 − V )Bu(c1)Bv(c2)dc1dc2

=
∫ ∞

−∞
(c1 − U)Bu(c1)dc1

∫ ∞

−∞
(c2 − V )Bv(c2)dc2

= 0 (2.40)

where we have used equation 2.39 since the first central moments are zero by
definition.

It is important to note that the inverse is not true — lack of correlation does
not imply statistical independence! To see this consider two identically distributed
random variables, u′ and v′, which have zero means and a non-zero correlation
〈u′v′〉. From these two correlated random variables two other random variables,
x and y, can be formed as:

x = u′ + v′ (2.41)

y = u′ − v′ (2.42)
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Figure 2.7: Jpdf on left (symmetry around slanted lines through the origin) shows
correlation while the jpdf on the right (symmetry about both axes) formed by
summing and differencing the two variables does not.

Clearly x and y are not statistically independent since the quantities from
which they were formed are not statistically independent. They are, however,
uncorrelated because:

〈xy〉 = 〈(u′ + v′)(u′ − v′)〉
= 〈u′2〉+ 〈u′v′〉 − 〈u′v′〉 − 〈v′2〉
= 0 (2.43)

since u′ and v′ are identically distributed (and as a consequence 〈u′2〉 = 〈v′2〉).
Figure 2.7 illustrates the change of variables carried out above. The jpdf re-

sulting from the transformation is symmetric about both axes, thereby eliminating
the correlation. Transformation, however, does not insure that the distribution is
separable, i.e., we did not insure that Bx,y(a1, a2) = Bx(a1)By(a2), as required for
statistical independence.

Exercise: Apply the transformation above, equation 2.41, to the jointly Gaussian
pdf given by equation 2.38 with ρuv 6= 0. Then use it to determine whether in
fact x and y are statistically independent.

2.5 Estimation from a Finite Number of Real-

izations

2.5.1 Estimators for averaged quantities

Since there can never an infinite number of realizations from which ensemble
averages (and probability densities) can be computed, it is essential to ask: How
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many realizations are enough? The answer to this question must be sought by
looking at the statistical properties of estimators based on a finite number of
realizations. There are two questions which must be answered. The first one is:

• Is the expected value (or mean value) of the estimator equal to the true
ensemble mean? Or in other words, is the estimator unbiased?

The second question is:

• Does the difference between the value of the estimator and that of the true
mean decrease as the number of realizations increases? Or in other words,
does the estimator converge in a statistical sense (or converge in probability).
Figure 2.8 illustrates the problems which can arise.

2.5.2 Bias and convergence of estimators

A procedure for answering these questions will be illustrated by considering a
simple estimator for the mean, the arithmetic mean considered above, XN . For
N independent realizations, xn, n = 1, 2, · · · , N where N is finite, XN is given by:

XN =
1

N

N∑
n=1

xn (2.44)

Now, as we observed in our simple coin-flipping experiment, since the xn are
random, so must be the value of the estimator XN . For the estimator to be
unbiased, the mean value of XN must be the true ensemble mean, X; i.e.,

limN→∞XN = X (2.45)

It is easy to see that since the operations of averaging and adding commute,

〈XN〉 = 〈 1
N

N∑
n=1

xn〉 (2.46)

=
1

N

N∑
n=1

〈xn〉 (2.47)

=
1

N
NX = X (2.48)

(Note that the expected value of each xn is just X since the xn are assumed
identically distributed). Thus xN is, in fact, an unbiased estimator for the mean.

The question of convergence of the estimator can be addressed by defining the
square of variability of the estimator, say ε2XN

, to be:

ε2XN
≡ var{XN}

X2
=

〈(XN −X)2〉
X2

(2.49)



36 CHAPTER 2. THE ELEMENTS OF STATISTICAL ANALYSIS

Figure 2.8: Three different estimators for the mean: The first of which converges
to the mean with increasing number of samples, the middle converges to the wrong
mean, and the bottom does not converge at all.
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Now we want to examine what happens to εXN
as the number of realizations

increases. For the estimator to converge it is clear that εx should decrease as the
number of samples increases. Obviously, we need to examine the variance of XN

first. It is given by:

var{XN} = 〈(XN −X)2〉

= 〈
[
1

N

N∑
n=1

xn − X)

]2
〉 (2.50)

= 〈
[
1

N

N∑
n=1

xn −
1

N

N∑
n=1

X)

]2
〉 (2.51)

= 〈
[
1

N

N∑
n=1

(xn −X)

]2
〉 (2.52)

since 〈XN〉 = X from equation 2.46. Using the fact that the operations of av-
eraging and summation commute, the squared summation can be expanded as
follows:

〈
[

N∑
n=1

(xn −X)

]2
〉 =

1

N2

N∑
n=1

N∑
m=1

〈(xn −X)(xm −X)〉

=
1

N2

N∑
n=1

〈(xn −X)2〉

=
1

N
var{x}, (2.53)

where the next to last step follows from the fact that the xn are assumed to
be statistically independent samples (and hence uncorrelated), and the last step
from the definition of the variance. It follows immediately by substitution into
equation 2.49 that the square of the variability of the estimator, XN , is given by:

ε2XN
=

1

N

var{x}
X2

=
1

N

[
σx

X

]2
(2.54)

Thus the variability of the estimator depends inversely on the number of in-
dependent realizations, N , and linearly on the relative fluctuation level of the
random variable itself, σx/X. Obviously if the relative fluctuation level is zero
(either because there the quantity being measured is constant and there are no
measurement errors), then a single measurement will suffice. On the other hand,
as soon as there is any fluctuation in the x itself, the greater the fluctuation (rel-
ative to the mean of x, 〈x〉 = X), then the more independent samples it will take
to achieve a specified accuracy.

Example: In a given ensemble the relative fluctuation level is 12% (i.e.,
σx/X = 0.12). What is the fewest number of independent samples that must
be acquired to measure the mean value to within 1%?
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Answer Using equation 2.54, and taking εXN
= 0.01, it follows that:

(0.01)2 =
1

N
(0.12)2 (2.55)

or N ≥ 144.

The variability is of great value in estimating statistical error. But it is, of
course, of no value when the mean value of the process itself if zero, or nearly so.
In such cases we have to satisfy ourselves with simply the variance (or standard
deviation) of XN . This has proven to be quite terrifying to many investigators
who have been afraid to show data because of what they believed to be its large
relative errors. In fact were being fooled by the only apparently large scatter,
since they were trying to measure a quantity whose average value was zero. This
can happen quite easily since most the plotting routine are self-scaling. In most
cases, a careful look at the actual numbers labelling the abscissa can put things
into the proper perspective.

2.6 Generalization to the estimator of any quan-

tity

Similar relations can be formed for the estimator of any function of the random
variable, say f(x). For example, an estimator for the average of f based on N
realizations is given by:

FN ≡ 1

N

N∑
n=1

fn (2.56)

where fn ≡ f(xn). It is straightforward to show that this estimator is unbiased,
and its variability (squared) is given by:

ε2FN
=

1

N

var{FN(x)}
〈f(x)〉2

(2.57)

Example: Suppose it is desired to estimate the variability of an estimator for
the variance based on a finite number of samples as:

varN{x} ≡ 1

N

N∑
n=1

(xn −X)2 (2.58)

(Note that this estimator is not really the best that we could do since it presumes
that the mean value, X, is known, whereas in fact usually only XN is obtainable as
in Problem 2.6 below. The errors this induces can be quite serious if the number
of independent samples is quite small. The so-called ‘Student-T’ distribution is
an attempt to deal with this problem. In modern turbulence research the number
of independent samples in a properly designed experiment is usually very large,
so the differences are slight. )
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Answer Let f = (x − X)2 in equation 2.57 so that FN = varN{x}, 〈f〉 =
var{x} and var{f} = var{(x−X)2} = 〈{(x−X)2 − var[x−X])}2〉. Then:

ε2varN =
1

N

var{(x−X)2}
(var{x})2

(2.59)

This is easiest to understand if we first expand only the numerator to obtain:

var{(x−X)2} = 〈{(x−X)2 − var[x]}2〉 = 〈(x−X)4〉 − [var{x}]2 (2.60)

Thus

ε2varN =
1

N

〈(x−X)4〉 − [var{x}]2

[var{x}]2
(2.61)

Obviously to proceed further we need to know how the fourth central moment
relates to the second central moment. As noted earlier, in general this is not
known. If, however, it is reasonable to assume that x is a Gaussian distributed
random variable, we know from section 2.3.4 that the kurtosis is 3. Then for
Gaussian distributed random variables,

ε2varN =
2

N
(2.62)

Thus the number of independent data required to produce the same level of con-
vergence for an estimate of the variance of a Gaussian distributed random variable
is
√
2 times that of the mean. It is easy to show that the higher the moment, the

more the amount of data required (see Problem 2.7).
As noted earlier, turbulence problems are not usually Gaussian, and in fact

values of the kurtosis substantially greater than 3 are commonly encountered, es-
pecially for the moments of differentiated quantities. Clearly the non-Gaussian
nature of random variables can affect the planning of experiments, since substan-
tially greater amounts of data can be required to achieved the necessary statistical
accuracy.

Problems for Chapter 2
1. By using the definition of the probability density function as the limit of

the histogram of a random variable as the internal size goes to zero and
as the number of realizations becomes infinite (equation 2.12), show that
the probability average defined by equation 2.17 and the ensemble average
defined by equation 2.2 are the same.

2. By completing the square in the exponential, prove that the pdf for the nor-
mal distribution given by equation 2.23 integrates to unity (equation 2.16)

3. Prove equation 2.24.

4. Prove for a normal distribution that the skewness is equal to zero and that
the kurtosis is equal to three.
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5. Show by integrating over one of the variables that the Gaussian jpdf given
by equation 2.38 integrates to the marginal distribution pdf given by equa-
tion 2.23, regardless of the value of the correlation coefficient.

6. Find the variability of an estimator for the variance using equation 2.60, but
with the sample mean, XN , substituted for the true mean, X.

7. Create a simple estimator for the fourth central moment — assuming the
second to be known exactly. Then find its variability for a Gaussian dis-
tributed random variable.

8. You are attempting to measure a Gaussian distributed random variable with
12 bit A/D converter which can only accept voltage inputs between 0 and
10. Assume the mean voltage is +4, and the rms voltage is 4. Show what
a histogram of your measured signal would look like assuming any voltage
which is clipped goes into the first or last bins. Also compute the first three
moments (central) of the measured signal.



Chapter 3

The Reynolds Averaged
Equations and the Turbulence
Closure Problem

3.1 The Equations Governing the Instantaneous

Fluid Motions

All fluid motions, whether turbulent or not, are governed by the dynamical equa-
tions for a fluid. These can be written using Cartesian tensor notation as:

ρ

[
∂ũi

∂t
+ ũj

∂ũi

∂xj

]
= − ∂p̃

∂xi

+
∂T̃

(v)
ij

∂xj

(3.1){
∂ρ̃

∂t
+ ũj

∂ρ̃

∂xj

}
+ ρ̃

∂ũj

∂xj

= 0 (3.2)

where ũi(~x, t) represents the i-th component of the fluid velocity at a point in

space, [~x]i = xi, and time, t. Also p̃(~x, t) represents the static pressure, T̃
(v)
ij (~x, t),

the viscous (or deviatoric) stresses, and ρ̃ the fluid density. The tilde over the
symbol indicates that an instantaneous quantity is being considered. Also the
Einstein summation convention has been employed.1

In equation 3.1, the subscript i is a free index which can take on the values
1, 2, and 3. Thus equation 3.1 is in reality three separate equations. These three
equations are just Newton’s second law written for a continuum in a spatial (or
Eulerian) reference frame. Together they relate the rate of change of momentum
per unit mass (ρui), a vector quantity, to the contact and body forces.

Equation 3.2 is the equation for mass conservation in the absence of sources
(or sinks) of mass. Almost all flows considered in this book will be incompressible,
which implies that the derivative of the density following the fluid material (the

1Einstein summation convention: repeated indices in a single term are summed over 1,2, and
3.

41
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term in brackets) is zero. Thus for incompressible flows, the mass conservation
equation reduces to:

Dρ̃

Dt
=

∂ρ̃

∂t
+ ũj

∂ρ̃

∂xj

= 0 (3.3)

From equation 3.2 it follows that for incompressible flows,

∂ũj

∂xj

= 0 (3.4)

The viscous stresses (the stress minus the mean normal stress) are represented

by the tensor T̃
(v)
ij . From its definition, T̃

(v)
kk = 0. In many flows of interest, the

fluid behaves as a Newtonian fluid in which the viscous stress can be related to
the fluid motion by a constitutive relation of the form

T̃
(v)
ij = 2µ

[
s̃ij −

1

3
s̃kkδij

]
(3.5)

The viscosity, µ, is a property of the fluid that can be measured in an independent
experiment. s̃ij is the instantaneous strain rate tensor defined by

s̃ij ≡
1

2

[
∂ũi

∂xj

+
∂ũj

∂xi

]
(3.6)

From its definition, s̃kk = ∂ũk/∂xk. If the flow is incompressible, s̃kk = 0 and the
Newtonian constitutive equation reduces to

T̃
(v)
ij = 2µs̃ij (3.7)

Throughout this text, unless explicity stated otherwise, the density, ρ̃ = ρ and
the viscosity µ will be assumed constant. With these assumptions, the instanta-
neous momentum equations for a Newtonian fluid reduce to:[

∂ũi

∂t
+ ũj

∂ũi

∂xj

]
= −1

ρ̃

∂p̃

∂xi

+ ν
∂2ũi

∂x2
j

(3.8)

where the kinematic viscosity, ν, has been defined as:

ν ≡ µ

ρ
(3.9)

Note that since the density is assumed constant, the tilde is no longer necessary.
Sometimes it will be more instructive and convenient to not explicitly include

incompressibility in the stress term, but to refer to the incompressible momentum
equation in the following form:

ρ

[
∂ũi

∂t
+ ũj

∂ũi

∂xj

]
= − ∂p̃

∂xi

+
∂T̃

(v)
ij

∂xj

(3.10)

This form has the advantage that it is easier to keep track of the exact role of the
viscous stresses.
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3.2 Equations for the Average Velocity

Turbulence is that chaotic state of motion characteristic of solutions to the equa-
tions of motion at high Reynolds number. Although laminar solutions to the
equations often exist that are consistent with the boundary conditions, perturba-
tions to these solutions (sometimes even infinitesimal) can cause them to become
turbulent. To see how this can happen, it is convenient to analyze the flow in two
parts, a mean (or average) component and a fluctuating component. Thus the
instantaneous velocity and stresses can be written as:

ũi = Ui + ui

p̃ = P + p

T̃
(v)
ij = T

(v)
ij + τ

(v)
ij (3.11)

where Ui, p, and T
(v)
ij represent the mean motion, and ui, p, and τij the fluctuating

motions. This technique for decomposing the instantaneous motion is referred to
as the Reynolds decomposition. Note that if the averages are defined as ensemble
means, they are, in general, time-dependent. For the remainder of this book,
unless otherwise stated, the density will be assumed constant so ρ̃ ≡ ρ and its
fluctuation is zero.

Substitution of equations 3.11 into equations 3.10 yields

ρ

[
∂(Ui + ui)

∂t
+ (Uj + uj)

∂(Ui + ui)

∂xj

]
= −∂(P + p)

∂xi

+
∂(T

(v)
ij + τ

(v)
ij )

∂xj

(3.12)

This equation can now be averaged to yield an equation expressing momentum
conservation for the averaged motion. Note that the operations of averaging
and differentiation commute; i.e., the average of a derivative is the same as the
derivative of the average. Also, the average of a fluctuating quantity is zero.2

Thus the equation for the averaged motion reduces to:

ρ

[
∂Ui

∂t
+ Uj

∂Ui

∂xj

]
= −∂P

∂xi

+
∂T

(v)
ij

∂xj

− ρ〈uj
∂ui

∂xj

〉 (3.13)

where the remaining fluctuating product term has been moved to the right-hand
side of the equation. Whether or not this last term is zero like the other fluctu-
ating terms depends on the correlation of terms in the product. In general, these
correlations are not zero.

The mass conservation equation can be similarly decomposed. In incompress-
ible form, substitution of equations 3.11 into equation 3.4 yields:

∂(Uj + uj)

∂xj

= 0 (3.14)

2These are easily proven from the definitions of both.
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of which the average is:
∂Uj

∂xj

= 0 (3.15)

It is clear from equation 3.15 that the averaged motion satisfies the same form
of the mass conservation equation as does the instantaneous motion, at least
for incompressible flows. How much simpler the turbulence problem would be
if the same were true for the momentum! Unfortunately, as is easily seen from
equation 3.13, such is not the case.

Equation 3.15 can be subtracted from equation 3.14 to yield an equation for
the instantaneous motion alone; i.e.,

∂uj

∂xj

= 0 (3.16)

Again, like the mean, the form of the original instantaneous equation is seen to
be preserved. The reason, of course, is obvious: the continuity equation is linear.
The momentum equation, on the other hand, is not; hence the difference.

Equation 3.16 can be used to rewrite the last term in equation 3.13 for the
mean momentum. Multiplying equation 3.16 by ui and averaging yields:

〈ui
∂uj

∂xj

〉 = 0 (3.17)

This can be added to 〈uj∂ui/∂xj〉 to obtain:

〈uj
∂ui

∂xj

〉+ 0 = 〈uj
∂ui

∂xj

〉+ 〈ui
∂uj

∂xj

〉 = ∂

∂xj

〈uiuj〉 (3.18)

where again the fact that arithmetic and averaging operations commute has been
used.

The equation for the averaged momentum, equation 3.13 can now be rewritten
as:

ρ

[
∂Ui

∂t
+ Uj

∂Ui

∂xj

]
= −∂P

∂xi

+
∂T

(v)
ij

∂xj

− ∂

∂xj

ρ〈uiuj〉 (3.19)

The last two terms on the right-hand side are both divergence terms and can be
combined; the result is:

ρ

[
∂Ui

∂t
+ Uj

∂Ui

∂xj

]
= −∂P

∂xi

+
∂

∂xj

[
T

(v)
ij − ρ〈uiuj〉

]
(3.20)

Now the terms in square brackets on the right have the dimensions of stress. The
first term is, in fact, the viscous stress. The second term, on the other hand, is not
a stress at all, but simply a re-worked version of the fluctuating contribution to the
non-linear acceleration terms. The fact that it can be written this way, however,
indicates that at least as far as the mean motion is concerned, it acts as though it
were a stress — hence its name, the Reynolds stress. In the succeeding sections
the consequences of this difference will be examined.
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3.3 The Turbulence Problem

It is the appearance of the Reynolds stress which makes the turbulence problem so
difficult — at least from the engineers perspective. Even though we can pretend
it is a stress, the physics which give rise to it are very different from the viscous
stress. The viscous stress can be related directly to the other flow properties by
constitutive equations, which in turn depend only on the properties of the fluid
(as in equation 3.5 for a Newtonian fluid). The reason this works is that when we
make such closure approximations for a fluid, we are averaging over characteristic
length and time scales much smaller than those of the flows we are interested
in. Yet at the same time, these scales are much larger than the molecular length
and time scales which characterize the molecular interactions that are actually
causing the momentum transfer. (This is what the continuum approximation is
all about.)

The Reynolds stress, on the other hand, arises directly from the flow itself!
Worse, the scales of the fluctuating motion which give rise to it are the scales we
are interested in. This means that the closure ideas which worked so well for the
viscous stress, should not be expected to work too well for the Reynolds stress.
And as we shall see, they do not.

This leaves us in a terrible position. Physics and engineering are all about
writing equations (and boundary conditions) so we can solve them to make pre-
dictions. We don’t want to have to build prototype airplanes first to see if they
will fall out of the sky. Instead we want to be able to analyze our designs before
building the prototype, both to save the cost in money and in lives if our ideas
are wrong. The same is true for dams and bridges and tunnels and automobiles.
If we had confidence in our turbulence models, we could even build huge one-offs
and expect them to work the first time. Unfortunately, even though turbulence
models have improved to the point where we can use them in design, we still
cannot trust them enough to eliminate expensive wind tunnel and model studies.
And recent history is full of examples to prove this.

The turbulence problem (from the engineers perspective) is then three-fold:

• The averaged equations are not closed. Count the unknowns in equa-
tion 3.20 above. Then count the number of equations. Even with the con-
tinuity equation we have at least six equations too few.

• The simple ideas to provide the extra equations usually do not
work. And even when we can fix them up for a particular class of flows
(like the flow in a pipe, for example), they will most likely not be able to
predict what happens in even a slightly different environment (like a bend).

• Even the last resort of compiling engineering tables for design
handbooks carries substantial risk. This is the last resort for the en-
gineer who lacks equations or cannot trust them. Even when based on a
wealth of experience, they require expensive model testing to see if they can
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be extrapolated to a particular situation. Unfortunately so infinitely clever
is Mother Nature in creating turbulence that is unique to a particular set of
boundary conditions that often they cannot.

Turbulent flows are indeed flows!. And that is the problem.

3.4 The Origins of Turbulence

Turbulent flows can often be observed to arise from laminar flows as the Reynolds
number, (or some other relevant parameter) is increased. This happens because
small distubances to the flow are no longer damped by the flow, but begin to
grow by taking energy from the original laminar flow. This natural process is
easily visualized by watching the simple stream of water from a faucet (or even
a pitcher). Turn the flow on very slowly (or pour) so the stream is very smooth
initially, at least near the outlet. Now slowly open the faucet (or pour faster)
and observe what happens, first far away, then closer to the spout. The surface
begins to exhibit waves or ripples which appear to grow downstream. In fact, they
are growing by extracting energy from the primary flow. Eventually they grow
enough that the flow breaks into drops. These are capillary instabilities arising
from surface tension. But regardless of the type of instability, the idea is the same:
small (or even infinitesimal) disturbances have grown to disrupt the serenity (and
simplicity) of laminar flow.

The manner in which instabilities grow naturally in a flow can be examined
using the equations we have already developed above. We derived them by de-
composing the motion into a mean and a fluctuating part. But suppose instead we
had decomposed the motion into a base flow part (the initially laminar part) and
into a disturbance which represents a fluctuating part superimposed on the base
flow. The result of substituting such a decomposition into the full Navier-Stokes
equations and averaging is precisely that given by equations 3.13 and 3.15. But
the very important difference is the additional restriction that what was previ-
ously identified as the mean (or averaged) motion is now also the base or laminar
flow.

Now if the base flow is really a laminar flow (which it must be by our original
hypothesis), then our averaged equations governing the base flow must yield the
same mean flow solution as the original laminar flow on which the disturbance
was superimposed. But this can happen only if these new averaged equations
reduce to exactly the same laminar flow equations without any evidence of a
disturbance. Clearly from equations 3.13 and 3.15, this can happen only if all
the Reynolds stress terms vanish identically! Obviously this requires that the
disturbances be infinitesimal so the extra terms can be neglected — hence our
interest in infinitesimal disturbances.

So we hypothesized a base flow which was laminar and showed that it is un-
changed even with the imposition of infinitesimal disturbances on it — but only as
long as the disturbances remain infinitesimal! What happens if the disturbance
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starts to grow? Obviously before we conclude that all laminar flows are laminar
forever we better investigate whether or not these infinitesimal disturbances can
grow to finite size. To do this we need an equation for the fluctuation itself.

An equation for the fluctuation (which might be an imposed disturbance) can
be obtained by subtracting the equation for the mean (or base) flow from that
for the instantaneous motion. We already did this for the continuity equation.
Now we will do it for the momentum equation. Subtracting equation 3.13 from
equation 3.11 yields an equation for the fluctuation as:

ρ

[
∂ui

∂t
+ Uj

∂ui

∂xj

]
= − ∂p

∂xi

+
∂τ

(v)
ij

∂xj

− ρ

[
uj

∂Ui

∂xj

]
− ρ

{
uj

∂ui

∂xj

− 〈uj
∂ui

∂xj

〉
}

(3.21)

It is very important to note the type and character of the terms in this equa-
tion. First note that the left-hand side is the derivative of the fluctuating velocity
following the mean motion. This is exactly like the term which appears on the
left-hand side of the equation for the mean velocity, equation 3.13. The first two
terms on the right-hand side are also like those in the mean motion, and represent
the fluctuating pressure gradient and the fluctuating viscous stresses. The third
term on the right-hand side is new, and will be seen later to represent the pri-
mary means by which fluctuations (and turbulence as well!) extract energy from
the mean flow, the so-called production terms. The last term is quadratic in the
fluctuating velocity, unlike all the others which are linear. Note that all of the
terms vanish identically if the equation is averaged, the last because its mean is
subtracted from it.

Now we want to examine what happens if the disturbance is small. In the limit
as the amplitude of the disturbance (or fluctuation) is infinitesimal, the bracketed
term in the equation for the fluctuation vanishes (since it involves products of in-
finitesimals), and the remaining equation is linear in the disturbance. The study
of whether or not such infinitesimal disturbances can grow is called Linear Fluid
Dynamic Stability Theory. These linearized equations are very different from
those governing turbulence. Unlike the equations for disturbances of finite ampli-
tude, the linearized equations are well-posed (or closed) since the Reynolds stress
terms are gone. Therefore, in principle, they can be solved exactly with no need
for closure approximations.

The absence of the non-linear terms, however, constrains the validity of the
linear analysis to only the initial stage of disturbance growth. This is because
as soon as the fluctuations begin to grow, their amplitudes can no longer be
assumed infinitesimal and the Reynolds stress (or more properly, the non-linear
fluctuating terms), become important. As a result the base flow equations begin to
be modified so that the solution to them can no longer be identical to the laminar
flow (or base flow) from which it arose. Thus while linear stability theory can
predict when many flows become unstable, it can say very little about transition
to turbulence since this process is highly non-linear.

It is also clear from the above why the process of transition to turbulence is
so dependent on the state of the background flow. If the disturbances present
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in the base flow are small enough, then Linear Stability Theory will govern their
evolution. On the other hand if the disturbances to the base flow are not small
enough, Linear Stability Theory can never apply since the non-linear terms will
never be negligible. This is so-called by-pass transition. It is not uncommon to
encounter situations like this in engineering environments where the incoming flow
has a modest turbulence level super-imposed upon it. In such cases, the nature of
the disturbances present is as important as their intensities, with the consequence
that a general transition criterion may not exist, and perhaps should not even be
expected.

3.5 The importance of non-linearity

We saw in the preceding section that non-linearity was one of the essential features
of turbulence. When small disturbances grow large enough to interact with each
other, we enter a whole new world of complex behavior. Most of the rules we
learned for linear systems do not apply. Since most of your mathematical training
has been for linear equations, most of your mathematical intuition therefore will
not apply either. On the other hand, you may surprise yourself by discovering
how much your non-mathematical intuition already recognizes non-linear behavior
and accounts for it.

Consider the following simple example. Take a long stick with one person
holding each end and stand at the corner of a building. Now place the middle
of the stick against the building and let each person apply pressure in the same
direction so as to bend the stick. If the applied force is small, the stick deflects
(or bends) a small amount. Double the force, and the deflection is approximately
doubled. Quadruple the force and the deflection is quadrupled. Now you don’t
need a Ph.D. in Engineering to know what is going to happen if you continue this
process. The stick is going to break!

But where in the equations for the deflection of the stick is there anything that
predicts this can happen? Now if you are thinking only like an engineer, you are
probably thinking: he’s asking a stupid question. Of course you can’t continue to
increase the force because you will exceed first the yield stress, then the breaking
limit, and of course the stick will break.

But pretend I am the company president with nothing more than an MBA.3

I don’t know much about these things, but you have told me in the past that
your computers have equations to predict everything. So I repeat: Where in the
equations for the deflection of this stick does it tell me this is going to happen?

3For some reason the famous O-ring disaster of the the Challenger space shuttle in 1983 comes
to mind here. The decision by the manufacturer, Morton Thiokol, to launch at temperatures
below that at which the O-ring seals had been tested was made entirely by MBA’s and lawyers,
over the objections of the scientists and engineers present. Aside from the tragedy of the lives
lost, including Gregory Jarvis whom my former office building at University at Buffalo is named
after, they blew up a billion dollar spacecraft.
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The answer is very simple: There is nothing in the equations that will
predict this. And the reason is also quite simple: You lost the ability to predict
catastrophes like breaking when you linearized the fundamental equations – which
started out as Newton’s Law too. In fact, before linearization, they were exactly
the same as those for a fluid, only the constitutive equation was different.

If we had NOT linearized these equations and had constitutive equations that
were more general, then we possibly could apply these equation right to and past
the limit. The point of fracture would be a bifurcation point for the solution.

Now the good news is that for things like reasonable deflections of beams,
linearization works wonderfully since we hope most things we build don’t deflect
too much – especially if you are sitting on a geological fault as I am at the moment
of this writing.4 Unfortunately, as we noted above, for fluids the disturbances tend
to quickly become dominated by the non-linear terms. This, of course, means our
linear analytical techniques are pretty useless for fluid mechanics, and especially
turbulence.

But all is not lost. Just as we have learned to train ourselves to anticipate
when sticks break, we have to train ourselves to anticipate how non-linear fluid
phenomena behave. Toward that end we will consider two simple examples: one
from algebra – the logistic map, and one from fluid mechanics – simple vortex
stretching.

Example 1: An experiment with the logistic map.

Consider the behavior of the simple equation:

yn+1 = ryn(1− yn) (3.22)

where n = 1, 2, · · ·, 0 < y < 1 and r > 0. The idea is that you pick any value for
y1, use the equation to find y2, then insert that value on the right-hand side to
find y3, and just continue the process as long as you like. Make sure you note any
dependence of the final result on the initial value for y.

• First notice what happens if you linearize this equation by disregarding the
term in parentheses; i.e., consider the simpler equation yn+1 = ryn. My
guess is that you won’t find this too exciting – unless, of course, you are one
of those individuals who likes watching grass grow (or golf on TV).

• Now consider the full equation and note what happens for r < 3, and es-
pecially what happens for very small values of r. Run as many iterations
as necessary to make sure your answer has converged. Do NOT try to take
short-cuts by programming all the steps at once. Do them one at a time so

4I am sitting at this moment of this writing at the Institute for Theoretical Physics at the
University of California/Santa Barbara. If you are reading this, it is likely that an earthquake
did not happen during the writing session.
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you can see what is happening. Believe me, it will be much easier this way
in the long run.

• Now research carefully what happens when r = 3.1, 3.5, and 3.8. Can you
recognize any patterns.

• Vary r between 3 and 4 to see if you can find the boundaries for what you
are observing.

• Now try values of r > 4. How do you explain this?

Example 2: Stretching of a simple vortex.
Imagine a simple vortex filament that looks about like a strand of spaghetti. Now
suppose it is in an otherwise steady inviscid incompressible flow. Use the vorticity
equation to examine the following:

• Examine first what happens to it in two-dimensional velocity field. Note
particularly whether any new vorticity can be produced; i.e., can the mate-
rial derivative of the vorticity ever be greater than zero? (Hint: look at the
ωj∂ui/∂xj-term.)

• Now consider the same vortex filament in a three-dimensional flow. Note
particularly the various ways new vorticity can be produced — if you have
some to start with! Does all this have anything to do with non-linearities?

Now you are ready for a real flow.

A Simple Experiment: The Starbucks5 problem

Go to the nearest coffee pot (or your favorite coffee shop) and get a cup of coffee.
(Note that you are not required to drink it, just play with it.) Then slowly and
carefully pour a little cream (or half and half, skim milk probably won’t work)
into it. Now ever so gently, give it a simple single stir with a stick or a spoon
and observe the complex display that you see. Assuming that the cream and
coffee move together, and that the vorticity (at least for a while) moves like fluid
material, explain what you see in the light of Example 2 above.

3.6 The Turbulence Closure Problem and the

Eddy Viscosity

From the point of view of the averaged motion, at least, the problem with the
non-linearity of the instantaneous equations is that they introduce new unknowns,

5Starbucks is a very popular chain of coffee shops in the USA and many other countries who
have only recently discovered what good coffee tastes like.
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the so-called Reynolds stress, into the averaged equations. There are six new
individual Reynolds stress components we must deal with to be exact: 〈u2

1〉, 〉u2
2〉,

〈u2
3〉, 〈u1u2〉, 〈u1u3〉, and 〈u2u3〉. These have to be related to the mean motion itself

before the equations can be solved, since the number of unknowns and number
of equations must be equal. The absence of these additional equations is often
referred to as the Turbulence Closure Problem.

A similar problem arose when the instantaneous equations were written (equa-
tions 3.1 and 3.2), since relations had to be introduced to relate the stresses (in
particular, the viscous stresses) to the motion itself. These relations (or consti-
tutive equations) depended only on the properties of the fluid material, and not
on the flow itself. Because of this fact, it is possible to carry out independent
experiments, called viscometric experiments, in which these fluid properties can
be determined once and for all. Equation 3.5 provides an example of just such
a constitutive relation, the viscosity, µ, depending only in the choice of fluid.
For example, once the viscosity of water at given temperature is determined, this
value can be used in all flows at that temperature, not just the one in which the
evaluation was made. Or for another example, if we are working on a problem
of air flow, we only need to go to reference book somewhere and we can find a
complete specification of how the viscosity of air depends on temperature and
pressure. Someone somewhere else has already compiled this information from
independent experiments.

It is tempting to try such an approach for the turbulence Reynolds stresses
(even though we know the underlying requirements of scale separation are not
satisfied). For example, a Newtonian type closure for the Reynolds stresses, often
referred to as an “eddy” or “turbulent” viscosity model, looks like:

−ρ〈uiuj〉+
1

3
〈uiui〉 = µt

[
Sij −

1

3
Skkδij

]
(3.23)

where µt is the turbulence “viscosity” (also called the eddy viscosity), and Sij is
the mean strain rate defined by:

Sij =
1

2

[
∂Ui

∂xj

+
∂Uj

∂xi

]
(3.24)

The second term vanishes identically for incompressible flow. For the simple
case of a two-dimensional shear flow, equation 3.23 for the Reynolds shear stress
reduces to

−ρ〈u1u2〉 = µt
∂U1

∂x2

(3.25)

Note this “model” is the direct analogy to the Newtonian model for viscous
stress in a fluid. The Reynolds stresses, 〈−uiuj〉 replaces the viscous stress, τ

(v)
ij .

The counterpart to the mechanical pressure is the mean normal Reynolds stress,
〈uiui〉/3. And like it’s fluid counterpart it, the Reynolds stress can depend only
on the mean strain rate at a single instant and single location in the flow, so has
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Figure 3.1: Schematic of axisymmetric plume

no history or non-local dependence. This absence will turn out to be fatal in most
applications. Moreover, unlike like the viscosity, µ, which depends only on the
fluid and not the motion itself, the “turbulence viscosity”, µt, depends entirely on
the motion.

That such a simple model can adequately describe the mean motion in at least
one flow is illustrated by the axisymmetric buoyant plume sketched in Figure 3.1.
Figures 3.2 and 3.3 show the calculation of the mean velocity and temperature
profiles respectively. Obviously the mean velocity and temperature profiles are
reasonably accurately computed, as are the Reynolds shear stress and lateral
turbulent heat flux shown in Figures 3.4 and 3.5.

The success of the eddy viscosity in the preceding example is more apparent
than real, however, since the value of the eddy viscosity and eddy diffusivity (for
the turbulent heat flux) have been chosen to give the best possible agreement with
the data. This, in itself, would not be a problem if that chosen values could have
been obtained in advance of the computation, or even if they could be used to
successfully predict other flows. In fact, the values used work only for this flow,
thus the computation is not a prediction at all, but a postdiction or hindcast
from which no extrapolation to the future can be made. In other words, our
turbulence “model” is about as useful as having a program to predict yesterday’s
weather. Thus the closure problem still very much remains.

Another problem with the eddy viscosity in the example above is that it fails
to calculate the vertical components of the Reynolds stress and turbulent heat
flux. An attempt at such a computation is shown in Figure 3.6 where the vertical
turbulent heat flux is shown to be severely underestimated. Clearly the value of
the eddy viscosity in the vertical direction must be different than in the radial
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Figure 3.2: Mean velocity profiles for axisymmetric plume

Figure 3.3: Mean temperature profiles for axisymmetric plume
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Figure 3.4: Reynolds shear stress profiles for axisymmetric plume

Figure 3.5: Radial turbulent heat flux for axisymmetric plume
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Figure 3.6: Vertical turbulent heat flux for axisymmetric plume
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direction. In other words, the turbulence for which a constitutive equation is being
written is not an isotropic “medium”. In fact, in this specific example the problem
is that the vertical component of the heat flux is produced more by the interaction
of buoyancy and the turbulence, than it is by the working of turbulence against
mean gradients in the flow. We will discuss this in more detail in the next chapter
when we consider the turbulence energy balances, but note for now that simple
gradient closure models never work unless gradient production dominates. This
rules out many flows involving buoyancy, and also many involving recirculations
or separation where the local turbulence is convected in from somewhere else.

A more general form of constitutive equation which would allow for the non-
isotropic nature of the “medium” (in this case the turbulence itself) would be

−ρ〈uiuj〉+
1

3
〈ukuk〉δij = µijkl

[
Skl −

1

3
Smmδkl

]
(3.26)

This closure relation allows each component of the Reynolds stress to have its own
unique value of the eddy viscosity. It is easy to see that it is unlikely this will solve
the closure problem since the original six unknowns, the 〈uiuj〉, have been traded
for eighty-one new ones, µijkl. Even if some can be removed by symmetries,
the remaining number is still formidable. More important than the number of
unknowns, however, is that there is no independent or general means for selecting
them without considering a particular flow. This is because turbulence is indeed
a property of the flow, not of the fluid.

3.7 The Reynolds Stress Equations

It is clear from the preceding section that the simple idea of an eddy viscosity
might not be the best way to approach the problem of relating the Reynolds
stress to the mean motion. An alternative approach is to try to derive dynamical
equations for the Reynolds stresses from the equations governing the fluctuations
themselves. Such an approach recognizes that the Reynolds stress is really a
functional6 of the velocity; that is, the stress at a point depends on the velocity
everywhere and for all past times, not just at the point in question and at a
particular instant in time.

The analysis begins with the equation for the instantaneous fluctuating ve-
locity, equation 3.21. This can be rewritten for a Newtonian fluid with constant
viscosity as:

ρ

[
∂ui

∂t
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∂xj

]
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∂xi

+
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(v)
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− ρ

[
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∂Ui

∂xj

]
− ρ

{
uj

∂ui

∂xj

− 〈uj
∂ui

∂xj

〉
}

(3.27)

Note that the free index in this equation is i. Also, since we are now talking about
turbulence again, the capital letters represent mean or averaged quantities.

6A functional is a function of a function
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Multiplying equation 3.27 by uk and averaging yields:

ρ

[
〈uk
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∂t
〉+ Uj〈uk

∂ui

∂xj

〉
]
= − 〈uk
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〉 (3.28)

−ρ
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∂xj

]
− ρ
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∂xj

〉
}

Now since both i and k are free indices they can be interchanged to yield a second
equation given by7:
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〉
}

Equations 3.28 and 3.29 can be added together to yield an equation for the
Reynolds stress,
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(3.30)

+
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It is customary to rearrange the first term on the right hand side in the fol-
lowing way: [

〈ui
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∂xk

〉+ 〈uk
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〉
]
= 〈p

[
∂ui

∂xk

+
∂uk
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]
〉 (3.31)

+
∂

∂xj

[〈pui〉δkj + 〈puk〉δij]

The first term on the right is generally referred to as the pressure strain-rate term.
The second term is written as a divergence term, and is generally referred to as
the pressure diffusion term. We shall see later that divergence terms can never
create nor destroy anything; they can simply move it around from one place to
another.

7Alternatively equation 3.21 can be rewritten with free index k, then multiplied by ui and
averaged
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The third term on the right-hand side of equation 3.30 can similarly be re-
written as: 〈ui
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(3.32)

+
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(v)
kj 〉+ 〈ukτ

(v)
ij 〉]

The first of these is also a divergence term. For a Newtonian fluid, the last is the
so-called “dissipation of Reynolds stress” by the turbulence viscous stresses. This
is easily seen by substituting the Newtonian constitutive relation to obtain:

1

ρ
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〉
]

(3.33)

It is not at all obvious what this has to do with dissipation, but it will become
clear later on when we consider the trace of the Reynolds stress equation, which
is the kinetic energy equation for the turbulence.

Now if we use the same trick from before using the continuity equation, we
can rewrite the second term on the right-hand side of equation 3.30 to obtain:[

〈uiuj
∂uk

∂xj

〉+ 〈ukuj
∂ui

∂xj

〉
]
=

∂

∂xj

〈uiukuj〉 (3.34)

This is also a divergence term.
We can use all of the pieces we have developed above to rewrite equation 3.30

as:
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(3.35)

This is the so-called Reynolds Stress Equation which has been the primary
vehicle for much of the turbulence modeling efforts of the past few decades.

The left hand side of the Reynolds Stress Equation can easily be recognized
as the rate of change of Reynolds stress following the mean motion. It seems
to provide exactly what we need: nine new equations for the nine unknowns we
cannot account for. The problems are all on the right-hand side. These terms are
referred to respectively as

1. the pressure-strain rate term

2. the turbulence transport (or divergence) term

3. the “production” term, and

4. the “dissipation” term.

Obviously these equations do not involve only Ui and 〈uiuj〉, but depend on many
more new unknowns.

It is clear that, contrary to our hopes, we have not derived a single equation
relating the Reynolds stress to the mean motion. Instead, our Reynolds stress
transport equation is exceedingly complex. Whereas the process of averaging the
equation for the mean motion introduced only six new independent unknowns,
the Reynolds stress, 〈uiuj〉, the search for a transport equation which will relate
these to the mean motion has produced many more unknowns. They are:

〈pui〉 − 3 unknowns (3.36)

〈uisjk〉 − 27 (3.37)

〈sijsjk〉 − 9 (3.38)

〈uiukuj〉 − 27 (3.39)

〈p∂ui

∂xj

〉 − 9 (3.40)

TOTAL − 75 (3.41)
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Not all of these are independent, since some can be derived from the others. Even
so, our goal of reducing the number of unknowns has clearly not been met.

Equations governing each of these new quantities can be derived from the
original dynamical equations, just as we did for the Reynolds stress. Unfortunately
new quantities continue to be introduced with each new equation, and at a faster
rate than the increase in the number of equations. Now the full implications of
the closure problem introduced by the Reynolds decomposition and averaging has
become apparent. No matter how many new equations are derived, the number
of new unknown quantities introduced will always increase more rapidly.

Our attempt to solve the turbulence problem by considering averages illus-
trates a general principle. Any time we try to fool Mother Nature by averaging
out her details, she gets her revenge by leaving us with a closure problem — more
equations than unknowns. In thermodynamics, we tried to simplify the consid-
eration of molecules by averaging over them, and were left with the need for an
equation of state. In heat transfer, we tried to simplify considerations by which
molecules transfer their kinetic energy, and found we were lacking a relation be-
tween the heat flux and the temperature field. And in fluid mechanics, we tried
to simplify consideration of the “mean” motion of molecules and ended up with
viscous stress. In all of these cases we were able to make simple physical models
which worked at least some of the time; e.g., ideal gas, Fourier-Newtonian fluid.
And these models all worked because we were able to make assumptions about
the underlying molecular processes and assume them to be independent of the
macroscopic flows of interest. Unfortunately such assumptions are rarely satisfied
in turbulence.

It should be obvious by now that the turbulence closure problem will not be
solved by the straight-forward derivation of new equations, nor by direct analogy
with viscous stresses. Rather, closure attempts will have to depend on an intimate
knowledge of the dynamics of the turbulence itself. Only by understanding how
the turbulence behaves can one hope to guess an appropriate set of constitutive
equations AND understand the limits of them. This is, of course, another conse-
quence of the fact that the turbulence is a property of the flow itself, and not of
the fluid!



Chapter 4

The Turbulence Kinetic Energy

4.1 The Kinetic Energy of the Fluctuations

It is clear from the previous chapter that the straightforward application of ideas
that worked well for viscous stresses do not work too well for turbulence Reynolds
stresses. Moreover, even the attempt to directly derive equations for the Reynolds
stresses using the Navier-Stokes equations as a starting point has left us with far
more equations than unknowns. Unfortunately this means that the turbulence
problem for engineers is not going to have a simple solution: we simply cannot
produce a set of reasonably universal equations. Obviously we are going to have
to study the turbulence fluctuations in more detail and learn how they get their
energy (usually from the mean flow somehow), and what they ultimately do with
it. Our hope is that by understanding more about turbulence itself, we will gain
insight into how we might make closure approximations that will work, at least
sometimes. Hopefully, we will also gain an understanding of when and why they
will not work.

An equation for the fluctuating kinetic energy for constant density flow can be
obtained directly from the Reynolds stress equation derived earlier, equation 3.35,
by contracting the free indices. The result is:

[
∂

∂t
〈uiui〉 + Uj

∂

∂xj

〈uiui〉
]

=
∂

∂xj

{
−2

ρ
〈pui〉δij − 〈q2uj〉+ 4ν〈sijui〉

}

−2〈uiuj〉
∂Ui

∂xj

− 4ν〈sij
∂ui

∂xj

〉 (4.1)

where the incompressibility condition (∂uj/∂xj = 0) has been used to eliminate
the pressure-strain rate term, and q2 ≡ uiui.

The last term can be simplified by recalling that the velocity deformation rate
tensor, ∂ui/∂xj, can be decomposed into symmetric and anti-symmetric parts;
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i.e.,
∂ui

∂xj

= sij + ωij (4.2)

where the symmetric part is the strain-rate tensor, sij, and the anti-symmetric
part is the rotation-rate tensor, ωij, defined by:

ωij =
1

2

[
∂ui

∂xj

− ∂uj

∂xi

]
(4.3)

Since the double contraction of a symmetric tensor with an anti-symmetric tensor
is identically zero, it follows immediately that:

〈sij
∂ui

∂xj

〉 = 〈sijsij〉+ 〈sijωij〉

= 〈sijsij〉 (4.4)

Now it is customary to define a new variable k, the average fluctuating kinetic
energy per unit mass, by:

k ≡ 1

2
〈uiui〉 =

1

2
〈q2〉 = 1

2
[〈u2

1〉+ 〈u2
2〉+ 〈u2

3〉] (4.5)

By dividing equation 4.1 by 2 and inserting this definition, the equation for the
average kinetic energy per unit mass of the fluctuating motion can be re-written
as: [

∂

∂t
+ Uj

∂

∂xj

]
k =

∂

∂xj

{
−1

ρ
〈pui〉δij −

1

2
〈q2uj〉+ 2ν〈sijui〉

}

−〈uiuj〉
∂Ui

∂xj

− 2ν〈sijsij〉 (4.6)

The role of each of these terms will be examined in detail later. First note that
an alternative form of this equation can be derived by leaving the viscous stress in
terms of the strain rate. We can obtain the appropriate form of the equation for
the fluctuating momentum from equation 3.21 by substituting the incompressible
Newtonian constitutive equation into it to obtain:[

∂

∂t
+ Uj

∂

∂xj

]
ui = −1

ρ

∂p

∂xi

+ ν
∂2ui

∂x2
j

−
[
uj

∂Ui

∂xj

]
−
{
uj

∂ui

∂xj

− 〈uj
∂ui

∂xj

〉
}

(4.7)

If we take the scalar product of this with the fluctuating velocity itself and average,
it follows (after some rearrangement) that:[

∂

∂t
+ Uj

∂

∂xj

]
k =

∂

∂xj

{
−1

ρ
〈pui〉δij −

1

2
〈q2uj〉+ ν

∂

∂xj

k

}

− 〈uiuj〉
∂Ui

∂xj

− ν〈∂ui

∂xj

∂ui

∂xj

〉 (4.8)
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Both equations 4.6 and 4.8 play an important role in the study of turbulence.
The first form given by equation 4.6 will provide the framework for understanding
the dynamics of turbulent motion. The second form, equation 4.8 forms the basis
for most of the second-order closure attempts at turbulence modelling; e.g., the so-
called k-ε models (usually referred to as the “k-epsilon models”). This because
it has fewer unknowns to be modelled, although this comes at the expense of some
extra assumptions about the last term. It is only the last term in equation 4.6
that can be identified as the true rate of dissipation of turbulence kinetic energy,
unlike the last term in equation 4.8 which is only the dissipation when the flow
is homogeneous. We will talk about homogeniety below, but suffice it to say
now that it never occurs in nature. Nonetheless, many flows can be assumed
to be homogeneous at the scales of turbulence which are important to this term,
so-called local homogeniety.

Each term in the equation for the kinetic energy of the turbulence has a distinct
role to play in the overall kinetic energy balance. Briefly these are:

• Rate of change of kinetic energy per unit mass due to non-stationarity; i.e.,
time dependence of the mean:

∂k

∂t
(4.9)

• Rate of change of kinetic energy per unit mass due to convection (or advec-
tion) by the mean flow through an inhomogenous field :

Uj
∂k

∂xj

(4.10)

• Transport of kinetic energy in an inhomogeneous field due respectively to
the pressure fluctuations, the turbulence itself, and the viscous stresses:

∂

∂xj

{
−1

ρ
〈pui〉δij −

1

2
〈q2uj〉+ 2ν〈sijui〉

}
(4.11)

• Rate of production of turbulence kinetic energy from the mean flow (gradi-
ent):

−〈uiuj〉
∂Ui

∂xj

(4.12)

• Rate of dissipation of turbulence kinetic energy per unit mass due to viscous
stresses:

ε ≡ 2ν〈sijsij〉 (4.13)

These terms will be discussed in detail in the succeeding sections, and the role of
each examined carefully.
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4.2 The Rate of Dissipation of the Turbulence

Kinetic Energy.

The last term in the equation for the kinetic energy of the turbulence has been
identified as the rate of dissipation of the turbulence energy per unit mass; i.e.,

ε = 2ν〈sijsij〉 = ν

{
〈∂ui

∂xj

∂ui

∂xj

〉+ 〈∂ui

∂xj

∂uj

∂xi

〉
}

(4.14)

It is easy to see that ε ≥ 0 always, since it is a sum of the average of squared
quantities only (i.e., 〈sijsij ≥ 0). Also, since it occurs on the right hand side of
the kinetic energy equation for the fluctuating motions preceded by a minus sign,
it is clear that it can act only to reduce the kinetic energy of the flow. Therefore
it causes a negative rate of change of kinetic energy; hence the name dissipation.

Physically, energy is dissipated because of the work done by the fluctuating
viscous stresses in resisting deformation of the fluid material by the fluctuating
strain rates; i.e.,

ε = 〈τ (v)ij sij〉 (4.15)

This reduces to equation 4.14 only for a Newtonian fluid. In non-Newtonian
fluids, portions of this product may not be negative implying that it may not all
represent an irrecoverable loss of fluctuating kinetic energy.

It will be shown in Chapter 5 that the dissipation of turbulence energy mostly
takes place at the smallest turbulence scales, and that those scales can be char-
acterized by the so-called Kolmogorov microscale defined by:

ηK ≡
(
ν3

ε

)1/4

(4.16)

In atmospheric motions where the length scale for those eddies having the most
turbulence energy (and most responsible for the Reynolds stress) can be measured
in kilometers, typical values of the Kolmogorov microscale range from 0.1−10 mil-
limeters. In laboratory flows where the overall scale of the flow is greatly reduced,
much smaller values of ηK are not uncommon. The small size of these dissipative
scales greatly complicates measurement of energy balances, since the largest mea-
suring dimension must be about equal to twice the Kolmogorov microscale. And
it is the range of scales, L/η, which makes direct numerical simulation of most
interesting flows impossible, since the required number of computational cells is
several orders of magnitude greater than (L/η)3. This same limitation also affects
experiments as well, which must often be quite large to be useful.

One of the consequences of this great separation of scales between those con-
taining the bulk of the turbulence energy and those dissipating it is that the
dissipation rate is primarily determined by the large scales and not the small.
This is because the viscous scales (which operate on a time scale of tK = (ν/ε)1/2)
dissipate rapidly any energy sent down to them by the non-linear processes of
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scale to scale energy transfer. Thus the overall rate of dissipation is controlled by
the rate of energy transfer from the energetic scales, primarily by the non-linear
scale-to-scale transfer. This will be discussed later when we consider the energy
spectrum. But for now it is important only note that a consequence of this is that
the dissipation rate is given approximately as:

ε ∝ u3

L
(4.17)

where u2 ≡ 〈q2〉/3 and L is something like an integral length scale. It is easy to
remember this relation if you note that the time scale of the energetic turbulent
eddies can be estimated as L/u. Thus dk/dt = (3/2)du2/dt can estimated as
(3u2/2)/(L/u).

Sometimes it is convenient to just define the “length scale of the energy-
containing eddies” (or the pseudo-integral scale) as:

l ≡ u3

ε
(4.18)

Almost always, l ∝ L, but the relation is at most only exact theoretically in the
limit of infinite Reynolds number since the constant of proportionality is Reynolds
number dependent. Some just assume ratio to be constant (and even universal),
and even refer to l as though it were the real integral scale. Others believe that
the ‘experimental’ scatter observed in the constant is because of the differing
upstream conditions and that the ratio may not be constant at all. It is really
hard to tell who is right in the absence of facilities or simulations in which the
Reynolds number can vary very much for fixed initial conditions. Nonetheless,
there is really overwhelming evidence (experimental and theoretical) that this
ratio depends very much on the type of flow being considered. This all may leave
you feeling a bit confused, but that’s the way turbulence is right now. It’s a lot
easier to teach if we just tell you one view, but that’s not very good preparation
for the future.

Here is what we can say for sure. Only the integral scale, L, is a physical
length scale, meaning that it can be directly observed in the flow by spectral or
correlation measurements (as shown later). The pseudo-integral scale, l, on the
other hand is simply a definition; and it is only at infinite turbulence Reynolds
number that it has any real physical significance. But it is certainly a useful
approximation at large, but finite, Reynolds numbers. We will talk about these
subtle but important distinctions later when we consider homogeneous flows, but
it is especially important when considering similarity theories of turbulence. For
now simply file away in your memory a note of caution about using equation 4.17
too freely. And do not be fooled by the cute description this provides. It is just
that, a description, and not really an explanation of why all this happens — sort
of like the weather man describing the weather.

Using equation 4.18, the Reynolds number dependence of the ratio of the
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Kolmorgorov microscale, ηK , to the pseudo-integral scale, l, can be obtained as:
ηK
l

= R
−3/4
l (4.19)

where the turbulence Reynolds number, Rl, is defined by:

Rl ≡
ul

ν
=

u4

νε
(4.20)

Example Estimate the Kolmogorov microscale for u = 1 m/s and L = 0.1m for
air and water.

air For air, Rl = 1 × (0.1)/15 × 10−6 ≈ 7 × 103. Therefore l/ηK ≈ 8 × 102, so
ηK ≈ 1.2× 10−4m or 0.12mm.

water For water, Rl = 1 × (0.1)/10−6 ≈ 105. Therefore l/ηK ≈ 5 × 103, so
ηK ≈ 2× 10−5m or 0.02mm.

Exercise: Find the dependence on Rl of the time-scale ration between the Kol-
morogov microtime and the time scale of the energy-containing eddies.

Thus the dissipative scales are all much smaller than those characterizing the
energy of the turbulent fluctuations, and their relative size decreases with increas-
ing Reynolds number. Note that in spite of this, the Kolmogorov scales all increase
with increasing energy containing scales for fixed values of the Reynolds number.
This fact is very important in designing laboratory experiments at high turbu-
lence Reynolds number where the finite probe size limits spatial resolution. The
rather imposing size of some experiments is an attempt to cope with this problem
by increasing the size of the smallest scales, thus making them larger than the
resolution limits of the probes being used.

Exercise: Suppose the smallest probe you can build can only resolve 0.1 mm.
Also to do an experiment which is a reasonable model of a real engineering flow
(like a hydropower plant), you need (for reason that will be clear later) a scale
separation of at least L/ηK = 104. If your facility has to be at least a factor of
ten larger than L (which you estimate as l), what is its smallest dimension?

It will also be argued later that these small dissipative scales of motion at very
high Reynolds number tend to be statistically nearly isotropic; i.e., their statistical
character is independent of direction. We will discuss some of the implications of
isotropy and local isotropy later, but note for now that it makes possible a huge
reduction in the number of unknowns, particularly those determined primarily by
the dissipative scales of motion.
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4.3 The Kinetic Energy of the Mean Motion and

the “Production” of Turbulence

An equation for the kinetic energy of the mean motion can be derived by a pro-
cedure exactly analogous to that applied to the fluctuating motion. The mean
motion was shown in equation 3.19 to be given by:

ρ

[
∂Ui

∂t
+ Uj

∂Ui

∂xj

]
= −∂P

∂xi

+
∂T

(v)
ij

∂xj

− ∂

∂xj

(ρ〈uiuj〉) (4.21)

By taking the scalar product of this equation with the mean velocity, Ui, we can
obtain an equation for the kinetic energy of the mean motion as:

Ui

[
∂

∂t
+ Uj

∂

∂xj

]
Ui = −Ui

ρ

∂P

∂xi

+
Ui

ρ

∂T
(v)
ij

∂xj

− Ui
∂〈uiuj〉
∂xj

(4.22)

Unlike the fluctuating equations, there is no need to average here, since all the
terms are already averages.

In exactly the same manner that we rearranged the terms in the equation
for the kinetic energy of the fluctuations, we can rearrange the equation for the
kinetic energy of the mean flow to obtain:[

∂

∂t
+ Uj

∂

∂xj

]
K =

∂

∂xj

{
−1

ρ
〈PUi〉δij −

1

2
〈uiuj〉Ui + 2ν〈SijUi〉

}

+〈uiuj〉
∂Ui

∂xj

− 2ν〈SijSij〉 (4.23)

where

K ≡ 1

2
Q2 =

1

2
UiUi (4.24)

The role of all of the terms can immediately be recognized since each term has its
counterpart in the equation for the average fluctuating kinetic energy.

Comparison of equations 4.23 and 4.6 reveals that the term −〈uiuj〉∂Ui/∂xj

appears in the equations for the kinetic energy of BOTH the mean and the fluc-
tuations. There is, however, one VERY important difference. This “production”
term has the opposite sign in the equation for the mean kinetic energy than in
that for the mean fluctuating kinetic energy! Therefore, whatever its effect on
the kinetic energy of the mean, its effect on the kinetic energy of the fluctuations
will be the opposite. Thus kinetic energy can be interchanged between the mean
and fluctuating motions. In fact, the only other term involving fluctuations in the
equation for the kinetic energy of the mean motion is a divergence term; therefore
it can only move the kinetic energy of the mean flow from one place to another.
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Therefore this “production ” term provides the only means by which energy can
be interchanged between the mean flow and the fluctuations.

Understanding the manner in which this energy exchange between mean and
fluctuating motions is accomplished represents one of the most challenging prob-
lems in turbulence. The overall exchange can be understood by exploiting the
analogy which treats −ρ〈uiuj〉 as a stress, the Reynolds stress. The term:

−ρ〈uiuj〉∂Ui/∂xj (4.25)

can be thought of as the working of the Reynolds stress against the mean ve-
locity gradient of the flow, exactly as the viscous stresses resist deformation by
the instantaneous velocity gradients. This energy expended against the Reynolds
stress during deformation by the mean motion ends up in the fluctuating motions,
however, while that expended against viscous stresses goes directly to internal en-
ergy. As we have already seen, the viscous deformation work from the fluctuating
motions (or dissipation) will eventually send this fluctuating kinetic energy on to
internal energy as well.

Now, just in case you are not all that clear exactly how the dissipation terms
really accomplish this for the instantaneous motion, it might be useful to examine
exactly how the above works. We begin by decomposing the mean deformation
rate tensor ∂Ui/∂xj into its symmetric and antisymmetric parts, exactly as we
did for the instantaneous deformation rate tensor in Chapter 3; i.e.,

∂Ui

∂xj

= Sij + Ωij (4.26)

where the mean strain rate Sij is defined by

Sij =
1

2

[
∂Ui

∂xj

+
∂Uj

∂xi

]
(4.27)

and the mean rotation rate is defined by

Ωij =
1

2

[
∂Ui

∂xj

− ∂Uj

∂xi

]
(4.28)

Since Ωij is antisymmetric and −〈uiuj〉 is symmetric, their contraction is zero so
it follows that:

−〈uiuj〉
∂Ui

∂xj

= −〈uiuj〉Sij (4.29)

Equation 4.29 is an analog to the mean viscous dissipation term given for
incompressible flow by:

T
(v)
ij

∂Ui

∂xj

= T
(v)
ij Sij = 2µSijSij (4.30)

It is easy to show that this term transfers (or dissipates) the mean kinetic energy
directly to internal energy, since exactly the same term appears with the opposite
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sign in the internal energy equations. Moreover, since SijSij ≥ 0 always, this is a
one-way process and kinetic energy is decreased while internal energy is increased.
Hence it can be referred to either as “dissipation” of kinetic energy, or as “pro-
duction” of internal energy. As surprising as it may seem, this direct dissipation
of energy by the mean flow is usually negligible compared to the energy lost to
the turbulence through the Reynolds stress terms. (Remember, there is a term
exactly like this in the kinetic energy equation for the fluctuating motion, but in-
volving only fluctuating quantities; namely, 2µ〈sijsij〉.) We shall show later that
for almost always in turbulent flow, 〈sijsij〉 >> SijSij. What this means is that
the energy dissipation in a turbulent flow is almost entirely due to the turbulence.

There is a very important difference between equations 4.29 and 4.30. Whereas
the effect of the viscous stress working against the deformation (in a Newtonian
fluid) is always to remove energy from the flow (since SijSij > 0 always), the effect
of the Reynolds stress working against the mean gradient can be of either sign, at
least in principle. That is, it can either transfer energy from the mean motion to
the fluctuating motion, or vice versa.

Almost always (and especially in situations of engineering importance), −〈uiuj〉
and Sij have the opposite sign. Therefore, −〈uiuj〉Sij > 0 almost always, so ki-
netic energy is removed from the mean motion and added to the fluctuations.
Since the term −〈uiuj〉∂Ui/∂xj usually acts to increase the turbulence kinetic
energy, it is usually referred to as the “rate of turbulence energy production”, or
simply the “production”.

Now that we have identified how the averaged equations account for the ‘pro-
duction’ of turbulence energy from the mean motion, it is tempting to think we
have understood the problem. In fact, ‘labeling’ phenomena is not the same as
‘understanding’ them. The manner in which the turbulence motions cause this
exchange of kinetic energy between the mean and fluctuating motions varies from
flow to flow, and is really very poorly understood. Saying that it is the Reynolds
stress working against the mean velocity gradient is true, but like saying that
money comes from a bank. If we want to examine the energy transfer mechanism
in detail we must look beyond the single point statistics, so this will have to be a
story for another time.

Example: Consider how the production term looks if the Reynolds stress is
modelled by an turbulent viscosity.

4.4 The Transport (or Divergence) Terms

The overall role of the transport terms is best understood by considering a turbu-
lent flow which is completely confined by rigid walls as in Figure 4.1. First consider
only the turbulence transport term. If the volume within the confinement is de-
noted by Vo and its bounding surface is So, then first term on the right-hand
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Figure 4.1: Turbulence confined by rigid walls.

side of equation 4.6 for the fluctuating kinetic energy can be integrated over the
volume to yield:

∫ ∫ ∫
Vo

∂

∂xj

[
−1

ρ
〈pui〉δij −

1

2
〈q2uj〉+ ν〈sijui〉

]
dV

=
∫ ∫

So

[
−1

ρ
〈pui〉δij −

1

2
〈q2uj〉+ ν〈sijui〉

]
njdS (4.31)

where we have used the divergence theorem — again!

We assumed our enclosure to have rigid walls; therefore the normal component
of the mean velocity (un = ujnj) must be zero on the surface since there can be no
flow through it (the kinematic boundary condition). This immediately eliminates
the contributions to the surface integral from the 〈pujnj〉 and 〈q2ujnj〉 terms. But
the last term is zero on the surface also. This can be seen in two ways: either
by invoking the no-slip condition which together with the kinematic boundary
condition insures that ui is zero on the boundary, or by noting from Cauchy’s
theorem that νsijnj is the viscous contribution to the normal contact force per
unit area on the surface (i.e., t(v)n ) whose scalar product with ui must be identically
zero since un is zero. Therefore the entire integral is identically zero and its net
contribution to the rate of change of kinetic energy is zero.

Thus the only effect of the turbulence transport terms (in a fixed volume at
least) can be to move energy from one place to another, neither creating nor
destroying it in the process. This is, of course, why they are collectively called
the transport terms. This spatial transport of kinetic energy is accomplished by
the acceleration of adjacent fluid due to pressure and viscous stresses (the first
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and last terms respectively), and by the physical transport of fluctuating kinetic
energy by the turbulence itself (the middle term).

This role of these turbulence transport terms in moving kinetic energy around
is often exploited by turbulence modellers. It is argued, that on the average, these
terms will only act to move energy from regions of higher kinetic energy to lower.
Thus a plausible first-order hypothesis is that this “diffusion” of kinetic energy
should be proportioned to gradients of the kinetic energy itself. That is,

−1

ρ
〈puj〉 −

1

2
〈q2uj〉+ ν〈sijui〉 = νke

∂k

∂xj

(4.32)

where νke is an effective diffusivity like the eddy viscosity discussed earlier. If we
use the alternative form of the kinetic energy equation (equation 4.8), there is no
need to model the viscous term (since it involves only k itself). Therefore our
model might be:

−1

ρ
〈puj〉 −

1

2
〈q2uj〉 = νkealt

∂k

∂xj

(4.33)

These, of course, look much more complicated in a real model because of the need
to insure proper tensorial invariance, etc., but the physics is basically the same.

If you think about it, that such a simple closure is worth mentioning at all is
pretty amazing. We took 9 unknowns, lumped them together, and replaced their
net effect by the simple gradient of something we did know (or at least wanted to
calculate), k. And surprisingly, this simple idea works pretty well in many flows,
especially if the value of the turbulent viscosity is itself related to other quantities
like k and ε. In fact this simple gradient hypothesis for the turbulence transport
terms is at the root of all engineering turbulence models.

There are a couple of things to note about such simple closures though, before
getting too enthused about them. First such an assumption rules out a counter-
gradient diffusion of kinetic energy which is known to exist in some flows. In
such situations the energy appears to flow up the gradient. While this may seem
unphysical, remember we only assumed it flowed down the gradient in the first
place. This is the whole problem with a plausibility argument. Typically energy
does tend to be transported from regions of high kinetic energy to low kinetic
energy, but there is really no reason for it always to do so, especially if there are
other mechanisms at work. And certainly there is no reason for it to always be
true locally, and the gradient of anything is a local quantity.

Let me illustrate this by a simple example. Let’s apply a gradient hypothesis
to the economy — a plausibility hypothesis if you will. By this simple model,
money would always flow from the rich who have the most, to the poor who
have the least. In fact, as history has shown, in the absence of other forces
(like revolutions, beheadings, and taxes) this almost never happens. The rich
will always get richer, and the poor poorer. And the reason is quite simple, the
poor are usually borrowing (and paying interest), while the rich are doing the
loaning (and collecting interest). Naturally there are individual exceptions and
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great success stories among the poor. And there are wealthy people who give
everything away. But mostly in a completely free economy, the money flows in a
counter-gradient manner. So society (and the rich in particular) have a choice —
risk beheading and revolution, or find a peaceful means to redistribute the wealth
— like taxes. While the general need for the latter is recognized (especially among
those who have and pay the least), there is, of course, considerable disagreement
of how much tax is reasonable to counter the natural gradient.

Just as the simple eddy viscosity closure for the mean flow can be more gener-
ally written as a tensor, so can it be here. In fact the more sophisticated models
write it as second or fourth-order tensors. More importantly, they include other
gradients in the model so that the gradient of one quantity can influence the gra-
dient of another. Such models can sometimes even account for counter-gradient
behavior. If your study of turbulence takes you into the study of turbulence mod-
els, watch for these subtle differences among them. And don’t let yourself be
annoyed or intimidated by their complexity. Instead marvel at the physics behind
them, and try to appreciate the wonderful manner in which mathematics has been
used to make them properly invariant so you don’t have to worry about whether
they work in any particular coordinate system. It is all these extra terms that
give you reason to hope that it might work at all.

4.5 The Intercomponent Transfer of Energy

The objective of this section is to examine how kinetic energy produced in one
velocity component of the turbulence can be transferred to the other velocity
components of the fluctuating motion. This is very important since often energy
is transferred from the mean flow to a only a single component of the fluctuating
motion. Yet somehow all three components of the kinetic energy end up being
about the same order of magnitude. The most common exception to this is very
close to surfaces where the normal component is suppressed by the kinematic
boundary condition. To understand what is going on, it is necessary to develop
even a few more equations; in particular, equations for each component of the
kinetic energy. The procedure is almost identical to that used to derive the kinetic
energy equation itself.

Consider first the equation for the 1-component of the fluctuating momentum.
We can do this by simply setting i = 1 and k = 1 in the equation 3.35, or derive
it from scratch by setting the free index in equation 3.27 equal to unity (i.e. i=1);
i.e.,

[
∂u1

∂t
+ Uj

∂u1

∂xj

]
= −1

ρ

∂p

∂x1

+
1

ρ

∂τ
(v)
1j

∂xj

−
[
uj

∂U1

∂xj

]
−
{
uj

∂u1

∂xj

− 〈uj
∂u1

∂xj

〉
}

(4.34)

Multiplying this equation by u1, averaging, and rearranging the pressure-velocity
gradient term using the chain rule for products yields:



4.5. THE INTERCOMPONENT TRANSFER OF ENERGY 73

1- component[
∂

∂t
+ Uj

∂

∂xj

]
1

2
〈u2

1〉

= + 〈p∂u1

∂x1

〉

+
∂

∂xj

{
−1

ρ
〈pu1〉δ1j −

1

2
〈u2

1uj〉+ 2ν〈s1ju1〉
}

− 〈u1uj〉
∂U1

∂xj

− 2ν〈s1js1j〉 (4.35)

All of the terms except one look exactly like the their counterparts in equation 4.6
for the average of the total fluctuating kinetic energy. The single exception is the
first term on the right-hand side which is the contribution from the pressure-strain
rate. This will be seen to be exactly the term we are looking for to move energy
among the three components.

Similar equations can be derived for the other fluctuating components with
the result that

2- component[
∂

∂t
+ Uj

∂

∂xj

]
1

2
〈u2

2〉

= + 〈p∂u2

∂x2

〉

+
∂

∂xj

{
−1

ρ
〈pu2〉δ2j −

1

2
〈u2

2uj〉+ 2ν〈s2ju2〉
}

− 〈u2uj〉
∂U2

∂xj

− 2ν〈s2js2j〉 (4.36)

and
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3- component[
∂
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+ Uj
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]
1

2
〈u2
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= + 〈p∂u3

∂x3
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+
∂
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ρ
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}

− 〈u3uj〉
∂U3

∂xj

− 2ν〈s3js3j〉 (4.37)

Note that in each equation a new term involving a pressure-strain rate has
appeared as the first term on the right-hand side. It is straightforward to show that
these three equations sum to the kinetic energy equation given by equation 4.6,
the extra pressure terms vanishing for the incompressible flow assumed here. In
fact, the vanishing of the pressure-strain rate terms when the three equations are
added together gives a clue as to their role. Obviously they can neither create nor
destroy kinetic energy, only move it from one component of the kinetic energy to
another.

The precise role of the pressure terms can be seen by noting that incompress-
ibility implies that:

〈p∂uj

∂xj

〉 = 0 (4.38)

It follows immediately that:

〈p∂u1

∂x1

〉 = −
[
〈p∂u2

∂x2
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∂x3

〉
]

(4.39)

Thus equation 4.35 can be written as:[
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= −
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}

− 〈u1uj〉
∂U1

∂xj

− 2ν〈s1js1j〉 (4.40)

Comparison of equation 4.40 with equations 4.36 and 4.37 makes it immedi-
ately apparent that the pressure strain rate terms act to exchange energy between
components of the turbulence. If 〈p∂u2/∂x2〉 and 〈p∂u3/∂x3〉 are both positive,
then energy is removed from the 1-equation and put into the 2- and 3-equations
since the same terms occur with opposite sign. Or vice versa.
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The role of the pressure strain rate terms can best be illustrated by looking at a
simple example. Consider a simple homogeneous shear flow in which Ui = U(x2)δ1i
and in which the turbulence is homogeneous. For this flow, the assumption of
homogeneity insures that all terms involving gradients of average quantities vanish
(except for dU1/dx2). This leaves only the pressure-strain rate, production and
dissipation terms; therefore equations 4.36, 4.37 and 4.40 reduce to:

1-component:

∂〈u2
1〉

∂t
= −

[
〈p∂u2

∂x2

〉+ 〈p∂u3

∂x3

〉
]
− 〈u1u2〉

∂U1

∂x2

− ε1 (4.41)

2-component:

∂〈u2
2〉

∂t
= +〈p∂u2

∂x2

〉 − ε2 (4.42)

3-component:

∂〈u2
3〉

∂t
= +〈p∂u3

∂x3

〉 − ε3 (4.43)

where

ε1 ≡ 2ν〈s1js1j〉 (4.44)

ε2 ≡ 2ν〈s2js2j〉 (4.45)

ε3 ≡ 2ν〈s3js3j〉 (4.46)

It is immediately apparent that only 〈u2
1〉 can directly receive energy from the

mean flow because only the first equation has a non-zero production term.
Now let’s further assume that the smallest scales of the turbulence can be

assumed to be locally isotropic. While not always true, this is a pretty good
approximation for high Reynolds number flows. (Note that it might be exactly
true in many flows in the limit of infinite Reynolds number, at least away from
walls.) Local isotropy implies that the component dissipation rates are equal;
i.e., ε1 = ε2 = ε3. But where does the energy in the 2 and 3-components come
from? Obviously the pressure-strain-rate terms must act to remove energy from
the 1-component and redistribute it to the others.

As the preceding example makes clear, the role of the pressure-strain-rate
terms is to attempt to distribute the energy among the various components of the
turbulence. An easy way to remember this is to think of the pressure strain rate
terms as the ‘Robin Hood’ terms: they steal from the rich and give to the poor.
In the absence of other influences, they are so successful that the dissipation by
each component is almost equal, at least at high turbulence Reynolds numbers. In
fact, because of the energy re-distribution by the pressure strain rate terms, it is
uncommon to find a turbulent shear flow away from boundaries where the kinetic
energy of the turbulence components differ by more than 30-40%, no matter which
component gets the energy from the mean flow.
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Example: In simple turbulent free shear flows like wakes or jets where the energy
is primarily produced in a single component (as in the example above), typically
〈u2

1〉 ≈ 〈u2
2〉 + 〈u2

3〉 where 〈u2
1〉 is the kinetic of the component produced directly

by the action of Reynolds stresses against the mean velocity gradient. Moreover,
〈u2

2〉 ≈ 〈u2
3〉. This, of course, makes some sense in light of the above, since both

off-axis components get most of their energy from the pressure-strain rate terms.

It is possible to show that the pressure-strain rate terms vanish in isotropic
turbulence. This suggests (at least to some) that the natural state for turbu-
lence in the absence of other influences is the isotropic state. This has also been
exploited by the turbulence modelers. One of the most common assumptions
involves setting these pressure-strain rate terms (as they occur in the Reynolds
shear equation) proportional to the anisotropy of the flow defined by:

aij = 〈uiuj〉 − 〈q2〉δij/3 (4.47)

Models accounting for this are said to include a“return-to-isotropy” term. An
additional term must also be included to account for the direct effect of the mean
shear on the pressure-strain rate correlation, and this is referred to as the “rapid
term”. The reasons for this latter term are not easy to see from single point equa-
tions, but fall out rather naturally from the two-point Reynolds stress equations
we shall discuss later.



Chapter 5

A First Look at Homogeneous
Turbulence:

5.1 Introduction

The main purpose of this chapter is to examine the single point equations devel-
oped in the preceding chapters as they apply to homogeneous turbulence. Since
we really haven’t defined yet what we mean by ‘homogenous’ let’s do that now.
By homogeneous we mean the statistics of the turbulence are independent of the
physical origin in space. In other words, no matter where we put the coordinate
system, we get the same numbers. For single point statistical quantities, this
means they must be constant in the homogeneous directions (however many there
are). For example, in a homogeneous flow which is homogeneous in all directions,
〈u2

1〉(~x) = 〈u2
1〉(~x′) for all ~x and ~x′, so we could just drop the ~x-argument com-

pletely and call it 〈u2
1〉. An obvious consequence of this which we have already

noted in previous chapters is that all spatial gradients of a homogeneous process
must be zero. We shall see later that another important consequence of this is
that we can approximate true ensemble averages by averages over homogeneous
directions in space instead.

A closely related concept to the concept of homogeneity is that of stationarity.
A stationary random process is one in which the statistics are independent of
origin in time. And this of course means all single-time averages must be time
independent; i.e., 〈u(t)〉 = U , 〈[ũ(t) − U ]2〉 = 〈u2〉, etc. Many experiments are
approximately stationary random processes, or at least we try to perform them
that way. The reason we shall see later in Chapter 8 is that it greatly simplifies
averaging by allowing us to time-average instead of performing the experiment
many times to build up an ensemble over which to average at an instant. This
works for stationary process since in principle the statistics are time-independent.
We only need to insure that we have enough independent pieces of information,
since the variable at one instant can still be correlated with that at another.
This is because stationarity does not imply that two-time statistics like 〈u(t)u(t′)
are time-independent, only that they are independent of origin in time. Hence

77
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they could be a function of the time difference t′ − t. Analogously, homogeneous
statistics involving two locations (e..g. two-point statistics like 〈u(~x)u(~x′)) can
depend on the separation vector ~x′ − ~x. We will have much more to say about
this in later chapters, since two-point statistics are the key to understanding the
different scales of turbulence motions and how they interact.

Homogeneous turbulence is an important subject in its own right but can only
be properly discussed with much more powerful statistical tools than we have
discussed so far. These will receive considerable attention later. Nonetheless
it important to discuss homogeneous turbulencet here briefly since so many of
the ideas commonly believed about turbulence come from our study of it. And
another reason is that in fact you should be impressed by how little we actually
know for sure about it. Most books and discussions on this subject present all of
this ‘believed’ stuff as fact. Hopefully you will not only be convinced that little
is really ‘fact’, but that there are plenty of opportunities for you to contribute to
this field.1 If nothing else, it should be obvious after reading this chapter that
most of the simple turbulence models should not be expected to work too well,
since they really can’t predict much of the observed behavior, at least not without
assuming the answer at the outset. And of course, this begs the bigger question:
if the models don’t work too well for simple homogeneous flows, can they ever be
trusted for more complicated ones? The answer is: perhaps (in the absence of
any alternatives) they are useful as engineering tools, but they certainly do not
represent a scientific understanding of the observed phenomena.

5.2 Why are homogeneous flows important?

We have been able to gain considerable insight into how turbulent flows behave by
considering in the preceding chapters the single point energy and Reynolds stress
equations. For example, we now know how to recognize the difference between
the unsteady (or non-stationary) contribution to the derivative following the mean
motion and that due to convection through an inhomogeneous field by the mean
flow (section 4.1. Obviously if the field is stationary or homogeneous, one or the
other of these terms vanishes. We also learned that the so-called transport terms
just move energy around, and that they vanish in homogeneous flows (section 4.4).
Then we saw that there are some terms which can remain, even if the flow is
homogeneous (e.g., sections 4.2 and 4.3).

We, in fact, already used a simple unsteady homogeneous example to illustrate
how the turbulence obtains energy from the mean flow via the Reynolds stress
working against the mean flow gradient (section 4.5). And we used the same exam-

1I remember my own experience as a student learning turbulence for the first time lamenting
that there was nothing about this beautiful subject left for me to do, everything was known.
So I turned my attention to free shear flows in the hopes I would find some small thing I could
contribute. Imagine my surprise years later when I discovered the truth! I vowed that I would
never leave students thiniking this way, at least until I was positive something was true.
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ple to illustrate how the pressure strain-rate terms describe the process by which
all the components are supplied with energy, even if all the energy is produced in
only one of them. Finally, we saw saw that the energy is dissipated primarily by
the turbulence at the very smallest scales of motion, which themselves have the
least energy but are often nearly locally homogeneous (section 4.2).

Clearly homogeneous flows must be of considerable interest since they allow
us to examine the behavior of the terms which do not vanish without additional
complications of those which do. Unfortunately, like many of the flows we con-
sider in this course, homogeneous turbulence is an ideal state which can at best
be approximated in a wind tunnel or in the computer. Nonetheless it is still of
considerable interest — to the engineer and the physicist, to the turbulence mod-
eler and to the theoretician. It is of interest to engineers and turbulence modelers
since it offers a simple way to test whether some terms have been modeled cor-
rectly without the complications of the others, or more importantly, without the
complications of boundary conditions. But, by contrast, such flows are of interest
to physicists and mathematicians because they appear to be anomalous, meaning
the results do not seem to be completely consistent with our ideas about how they
should behave.

These anomalies of homogeneous turbulence present a dilemma for the mod-
elers and engineers: if they are truly anomalous, should they even try to account
for the results at all with their models? Many think not, and many in fact do
not. Even the ones who believe the results of homogeneous flows are important
to modeling are very selective about which experimental results they use, and as-
sume all the other experiments to be wrong or simply ignore the ones they don’t
like. But this creates a problem for those actually trying to find the truth, since
new findings and insights can be treated quite harshly because these new ideas
can be quite threatening to those who have invested so much time building models
based the old ones.

These anomalies of homogeneous flows also present a real dilemma for the
physicists and mathematicians. Anomalies in science sometimes mean there is
something big is about to be discovered. One possibility is that we have been doing
something very wrong in our experiments and computations, and we hopefully
are about to learn what. Or even more exciting, there may be something very
wrong with our ideas, and we might be about to have some new ones which may
completely change our understanding of how the world is.

The best example of the latter possibility is illustrated by the general assess-
ment of physics near the end of the 19th century. Scientists then thought they
had learned all the fundamental ideas of physics, with nothing important left to
be done but engineering applications of well-established principles. All that was
left, some said, was to account for two anomalous experiments — the Rayleigh-
Jeans experiment2 and the Mickelson-Morley experiment3 — and many thought

2The Rayleigh-Jeans experiment measured thermal radiation from a black box
3The Mickelson-Morley experiment measured the speed of light and showed it to be appar-

ently independent of the speed of the source.
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these experiments to be in error. The resolution of these two anomalies gave us
quantum mechanics and relativity, both of which completely changed our picture
of the world around us and had dramatic influences on engineering and life on
this planet.

Will such be the case with our view of turbulence when we resolve the remain-
ing dilemmas of homogeneous flows in turbulence? Or will we simply find out
that most of the conflicting experiments have been wrong. The search for answers
will be exhilarating for some, and frustrating for others, but necessary for all —
especially for those like you entering the field now. If we find the answers, they
may completely change how we do things, like quantum mechanics or relativity
did. Or we may find they have little effect at all and our old way of doing things
is the best we can do. A good example of this was the recognition by Copernicus
that the earth was not the center of the universe. The new world view completely
changed the way we think about the universe, but had no effect on navigation.
Sailors still find their way across great oceans using the principles of Ptolemaic
navigation which is based on the idea that the earth is at the center.4

My personal suspicion is that things will be changed a lot as our understanding
of these anomalies grows, simply because our present turbulence models really
don’t extrapolate too well to new problems. Unlike the example of Ptolemaic
navigation which works perfectly well on the surface of the earth, our turbulence
models are really very reliable, especially at predicting new things we haven’t built
into them. This probably means we still have much to learn about turbulence,
and as we learn our ideas will change and our models improve. So we might as
well begin this learning process with the problem which is at least in principle the
easiest: homogeneous turbulent flows.

5.3 Decaying turbulence: a brief overview

Look, for example, at the decay of turbulence which has already been gener-
ated. If this turbulence is homogeneous and there is no mean velocity gradient to
generate new turbulence, the kinetic energy equation reduces to simply:

d

dt
k = −ε (5.1)

Note that the time derivative is just an ordinary derivative, since there is no de-
pendence of any single point quantity on position. This is often written (especially
for isotropic turbulence) as:

d

dt

[
3

2
u2
]
= −ε (5.2)

where

k ≡ 3

2
u2 (5.3)

4I can personally testify that this works, since I arrived in Kinsale, Ireland after an arduous
voyage across the Atlantic from America in my 42 foot sailboat Wings by exactly this method.
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Now you can’t get any simpler than this. Yet unbelievably we still don’t have
enough information to solve it. Let’s try. Suppose we use the extended ideas of
Kolmogorov we introduced in Chapter 4 to relate the dissipation to the turbulence
energy, say:

ε = f(Re)
u3

l
(5.4)

Already you can see we have two problems, what is f(Re), and what is the time
dependence of l? Now there is practically a different answer to these questions
for every investigator in turbulence — most of whom will assure you their choice
is the only reasonable one.

Figure 5.1 shows two attempts to correlate some of the grid turbulence data
using the longitudinal integral scale for l, i.e., l = L

(1)
11 , or simply L. The first thing

you notice is the problem at low Reynolds number. The second is probably the
possible asymptote at the higher Reynolds numbers. And the third is probably
the scatter in the data, which is characteristic of most turbulence experiments,
especially if you try to compare the results of one experiment to the other.

Let’s try to use the apparent asymptote at high Reynolds number to our
advantage by arguing that f(Re) → A, where A is a constant. Note that this
limit is consistent with the Kolmogorov argument we made back when we were
talking about the dissipation earlier, so we might feel on pretty firm ground here,
at least at high turbulent Reynolds numbers. But before we feel too comfortable
about this, we should note that a careful examination of the data suggests that
the asymptote depends on the details of how the experiment was forced at the
large scales of motion (e.g. which grid was used, etc.) . This is not good, since if
true it means that the answer depends on the particular flow — exactly what we
wanted to avoid by modelling in the first place.

Nonetheless, let’s proceed by assuming in spite of the evidence that A ≈ 1
and L is the integral scale. Now how does L vary with time? Figure 5.2 shows
the ratio of the integral scale to the Taylor microscale from the famous Comte-
Bellot/Corrsin (1971) experiment. One might assume, with some theoretical jus-
tification, that L/λ → const. This would be nice since you will be able to show
that if the turbulence decays as a power law in time, say u2 ∼ tn, then λ ∼ t1/2.
But as shown in Figure 5.3 from Wang et al (2000), this is not a very good as-
sumption for the DNS data available at that time. Now I believe this is because of
problems in the simulations, mostly having to do with the fact that turbulence in
a box is not a very good approximation for truly homogeneous turbulence unless
the size of the box is much larger than the energetic scales. Figure 5.4 shows
what happens if you try to correct for the finite box size, and now the results look
pretty good.

You can see immediately that if I am right and L ∼ λ ∼ t1/2 then u2 ∼ t−1.
Now any careful study of the data will convince you that the energy indeed decays
as a power law in time, but there is no question that n 6= −1, but n < −1, at
least for most of the experiments. Most people have tried to fix this problem
changing p. But I say the problem is in f(Re) and the assumption that ε ∼ u3/L
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Figure 5.1: Collection of experimental data showing relation of the longitudianl
integral scale, L

1)
1,1, to l = u3/ε; i.e., φ = L

(1)
1,1/l = L

(1)
1,1ε/u

3 (from Gamard and
George 2000).
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Figure 5.2: Plots of longitudinal integral scale (L
(1)
1,1 = Lf ) and lateral integral

scale (L
(1)
2,2 = Lg) to the Taylor microscale, λg (data of Comte-Bellot and Corrsin

1971).
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Figure 5.3: Ratio of longitudinal integral scale to the Taylor microscale, λg from
recent DNS of isotropic decaying turbulence by Wray (1998), from Wang and
George 2003). Note how different the results are when the large scales missing
due to the finite computational box are accounted for.



5.3. DECAYING TURBULENCE: A BRIEF OVERVIEW 85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time

L
/λ

oooooooo L/λ corrected deBruyn Kops/Riley

................. Lm/λm corrected deBruyn Kops/Riley

−−−−−−−− L/λ=3.400

| <−constant exponent region −>|

Figure 5.4: Ratio of longitudinal integral scale to the Taylor microscale, λg from
recent DNS of isotropic decaying turbulence by DeBruyn Kops and Riley (1999),
from Wang and George 2003). Note how different the results are when the large
scales missing due to the finite computational box are accounted for.
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at finite Reynolds numbers. I would argue that n → −1 only in the limit of
infinite Reynolds number.

To see why I believe this, try doing the problem another way. We will show
in a later chapter that if the turbulence decays as a power law, then the Taylor
microscale, λg, must be proportional exactly to t1/2. Thus we must have (assuming
isotropy):

dk

dt
= −10ν

k

λ2
g

∝ k

t
(5.5)

It is easy to show that k ∝ tn where n is given by:

dλ2
g

dt
= −10

n
(5.6)

and any value of n ≤ −1 is acceptable. Obviously the difference lies in the use of
the relation ε ∝ u3/L at finite Reynolds numbers.

Figure 5.5 shows data taken downstream of a grid by Genevieve Comte-Bellot
and Stanley Corrsin in one of the most famous turbulence experiments ever. The
experiments were carried out at the Johns Hopkins University while I was a stu-
dent there, and I can still remember the huge hand-drawn graphs spread out over
the long coffee table. Genevieve was using them to determine whether data satis-
fied a power law decay, which in the days before modern computer graphics was
the way you had to do things. You can judge from yourself from the figure, but
clearly a power law of n = −1.28 works pretty well.

Believe it or not, this whole subject is one of the really hot debates of the last
decade, and may well be for the next as well. The reason, at least in part, is that
the value of the decay exponent, n, seems to a function of how the flow started
(e.g., which grid, what Reynolds number, etc.). Until quite recently actually
(George 1992 Phys. Fluids was the turning point) people believed (hoped is
perhaps a more accurate description) that such turbulence had universal decay
characteristics. There is pretty convincing evidence that it does not. As figure ??
makes clear, there is even convincing evidence from recent experiments at Imperial
College of London by Christos Vassilicos and his co-workers that some kinds of
grids (a particular class of fractal grids) like the one shown in figure ?? don’t
decay as power-laws at all, but in fact decay exponentially. If you examine the
equations above, you can see that this can happen only if the Taylor microscale
remains constant during decay, so that the time derivative of the kinetic energy
is proportional to the kinetic energy. Figure ?? show that this is exactly what
happens.

Interestingly, as shown in George 1992 (Physics of Fluids) and George and
Wang (2009), both kinds of decay, power-law and exponential, are consistent with
an equilibrium similarity analysis of the spectral energy equations. And the theory
even predicts the observed dependence on initial (or upstream) conditions. But
while this shows that what we observe is consistent with the equations and how
the turbulence generally evolves, we really don’t have clue yet why it behaves one



5.3. DECAYING TURBULENCE: A BRIEF OVERVIEW 87

Figure 5.5: Turbulence intensity decay downstream of a square-rod grid withM =
25.4mm and U = 20m/s The open circles represent the mean square streamwise
fluctuations and the plus signs the cross-stream (from Comte-Bellot and Corrsin
1971).
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Figure 5.6: Variation of turbulence intensity with downstream position for one
space-filling fractal grid. Solid line shows exponential fit (from Hurst and Vassil-
icos (2007)).

way or the other. Who knows, maybe some of you will be involved in resolving
it, since it really is one of the most fundamental questions in turbulence.

5.4 A second look at simple shear flow turbu-

lence

Let’s consider another homogeneous flow that seems pretty simple at first sight,
homogeneous shear flow turbulence with constant mean shear. We already con-
sidered this flow when we were talking about the role of the pressure-strain rate
terms. Now we will only worry, for the moment, about the kinetic energy which
reduces to:

∂

∂t

[
1

2
k
]
= −〈uv〉dU

dy
− ε (5.7)

Now turbulence modelers (and most experimentalists as well) would love for
the left-hand side to be exactly zero so that the production and dissipation ex-
actly balance. Unfortunately Mother Nature, to this point at least, has not allowed
such a flow to be generated. In every experiment to-date after some initial adjust-
ments, the energy increases with time (or equivalently, increases with increasing
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Figure 5.7: Diagram of space-filling square fractal grid, from figure 33 of Hurst
and Vassilicos (2007).
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downsteam distance as the turbulence is convected down the tunnel).
Let’s make a few simple assumptions and see if we can figure out what is going

on. Suppose we assume that the correlation coefficient 〈uv〉/u2 = C is a constant.
Now, we could again assume that ε ∼ u3/l, at least in the very high Reynolds
number limit. But for reasons that will be obvious below, let’s assume something
else we know for sure about the dissipation; namely that:

ε = D
u2

λ2
(5.8)

where λ is the Taylor microscale and D ≈ 15 (exact for isotropic turbulence).
Finally let’s assume that the mean shear is constant so dU/dy = K is constant
also. Then our problem simplifies to:

d

dt

3

2
u2 = −KCu2 −D

u2

λ2
(5.9)

Even with all these simplifications and assumptions the problem still comes
down to “What is λ = λ(t)?”. Now the one thing that all the experiments agree
on is that λ = λo is approximately constant. (I actually have a theory about this,
together with M. Gibson, and it even predicts this result, George and Gibson 1992
Experiments in Fluids) Now you have all you need to finish the problem, and I
will leave it for you. But when you do you will find that the turbulence grows (or
decays) exponentially. How fast it grows (or decays) depends on the ratio of the
production to dissipation; i.e.,

P

ε
≡ −〈uv〉dU/dy

ε
(5.10)

It is clear from the experiments that P/ε depends on the upstream or initial con-
ditions, as the theory suggests it should. But it is not at all clear how. One
possibiliy is that the higher Reynolds number characterising these initial condi-
tions, the closer P/ε is to unity. If so, then you will only get P/ε → 1 as an infinite
Reynolds number limit. Which in turn implies you can never really achieve the
ideal flow many people would like where the production and dissipation exactly
balance. But here we are again, with lots of questions and no definitive highl
Reynolds number experiments to guide us, nor little hope for help from the low
Reynolds number numerical simulations. So here is one more set of questions to
add to the list of things about turbulence we would like to know and to which
you might contribute.
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Chapter 6

Turbulent Free Shear Flows

6.1 Introduction

Free shear flows are inhomogeneous flows with mean velocity gradients that de-
velop in the absence of boundaries. As illustrated in Figures 6.1 and 6.2, turbulent
free shear flows are commonly found in natural and in engineering environments.
The jet of air issuing from one’s nostrils or mouth upon exhaling, the turbulent
plume from a smoldering cigarette, and the buoyant jet issuing from an erupt-
ing volcano — all illustrate both the omnipresence of free turbulent shear flows
and the range of scales of such flows in the natural environment. Examples of
the multitude of engineering free shear flows are the wakes behind moving bodies
and the exhausts from jet engines. Most combustion processes and many mixing
processes involve turbulent free shear flows.

Free shear flows in the real world are most often turbulent. Even if generated
as laminar flows, they tend to become turbulent much more rapidly than the wall-
bounded flows which we will discuss later. This is because the three-dimensional
vorticity necessary for the transition to turbulence can develop much more rapidly
in the absence of walls that inhibit the growth velocity components normal to
them.

The tendency of free shear flows to become and remain turbulent can be greatly
modified by the presence of density gradients in the flow, especially if gravitational
effects are also important. Why this is the case can easily be seen by examining
the vorticity equation for such flows in the absence of viscosity,[

∂ωi

∂t
+ ũj

∂ω̃i

∂xj

]
= ω̃j

∂ũi

∂xj

+ εijk
∂ρ̃

∂xj

∂p̃

∂xk

(6.1)

The cross-product of the density and pressure gradients of last term vanishes
identically in constant density flows or barotropic1 flows, but can act quite dra-
matically to either increase or decrease vorticity production. For example, in the

1A barotropic flow is one in which the gradients of density and pressure are co-linear, because
the density is a function of the pressure only.

93
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Figure 6.1: Left: Exhaust from smokestack. Right: Exhaust from rocket engine

vertically-oriented buoyant plume generated by exhausting a lighter fluid into a
heavier one, the principal density gradient is across the flow and thus perpendic-
ular to the gravitational force which is the principal contributor to the pressure
gradient. As a consequence the turbulent buoyant plume develops much more
quickly than its uniform density counterpart, the jet. On the other hand, horizon-
tal vorticity (vertical motions) in a horizontal free shear flows in a stably stratified
environment (fluid density decreases with height) can be quickly suppressed since
the density and pressure gradients are in opposite directions.

Free turbulent shear flows are distinctly different from the homogeneous shear
flows. In a free turbulent shear flow, the vortical fluid is spatially confined and is
separated from the surrounding fluid by an interface, the turbulent-nonturbulent
interface (also known as the ”Corrsin superlayer” after itself discoverer). The
turbulent/non-turbulent interface has a thickness which is characterized by the
Kolmogorov microscale, thus its characterization as an interface is appropriate.
The actual shape of the interface is random and it is severely distorted by the
energetic turbulent processes which take place below it, with the result that at
any given location the turbulence can be highly intermittent. This means that at
a given location, it is sometimes turbulent, sometimes not.

It should not be inferred from the above that the non-turbulent fluid outside
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Figure 6.2: Left: Steam engine. Right: Red Arrow Jets.

the superlayer is quiescent. Quite the opposite is true since the motion of the
fluid at the interface produces motions in the surrounding stream just as would
the motions of a solid wall. Alternately, the flow outside the interface can be
viewed as being “induced” by the vortical motions beneath it. It is easy to show
that these induced motions are irrotational. Thus since these random motions of
the outer flow have no vorticity, they can not be considered turbulent.

Figure 6.3 shows records of the velocity versus time at two locations in the
mixing layer of a round jet. When turbulent fluid passes the probes, the velocity
signals are characterized by bursts of activity. The smooth undulations between
the bursts in the lower figure are the irrotational fluctuations induced by the
turbulent vorticity on the other side of the interface. Note that near the center of
the mixing layer where the shear is a maximum, the flow is nearly always turbulent,
while it becomes increasingly intermittent as one proceeds away from the region of
maximum production of turbulence energy. This increasing intermittency toward
the outer edge is a characteristic of all free shear flows, and is an indication of the
fact that the turbulent/non-turbulent interface is constantly changing its position.

One of the most important features of free shear flows is that the amount of
fluid which is turbulent is continuously increased by a process known as entrain-
ment. No matter how little fluid is in the flow initially, the turbulent part of the
flow will continue to capture new fluid by entrainment as it evolves. The photo-
graph of an air jet in Figure 1.2 illustrates this phenomenon dramatically. The
mass flow of the jet increases at each cross-section due to entrainment. Entrain-
ment is not unique to turbulent flows, but is also an important characteristic of
laminar flow, even though the actual mechanism of entrainment is quite different.

There are several consequences of entrainment. The first and most obvious is
that free shear flows continue to spread throughout their lifetime. (That this is
the case is obvious from the pictures of Figures 6.1 and 6.2. A second consequence
of entrainment is that the fluid in the flow is being continuously diluted by the
addition of fluid from outside it. This is the basis of many mixing processes, and
without such entrainment our lives would be quite different. A third consequence
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Figure 6.3: Velocity versus time, axisymmetric jet.

is that it will never be possible to neglect the turbulent transport terms in the
dynamical equations, at least in the directions in which the flow is spreading.
This is because the dilution process has ensured that the flow can never reach
homogeneity since it will continue to entrain and spread through its lifetime (Re-
call that the transport terms were identically zero in homogeneous flows). Thus
in dealing with free shear flows, all of the types of terms encountered in the tur-
bulence kinetic energy equation of Chapter ?? must be dealt with — advection,
dissipation, production, and turbulent transport.

Turbulent free shear flows have another distinctive feature in that they very
often give rise to easily recognizable large scale structures or eddies. Figures 1.2
and 1.3 also illustrate this phenomenon, and coherent patterns of a scale equal
to the lateral extent of the flow are clearly visible. The same features are are
more difficult to see at higher Reynolds numbers because of the increasing en-
ergy of the smaller scales, but none-the-less they can still be discerned in the
high Reynolds number jet of Figure 6.4. These large eddies appear to control
the shape of the turbulent/non-turbulent interface and play an important role in
the entrainment process. They stretch the small scale vorticity on the interface
(the so-called Corrsin superlayer) so these are amplified, with the result that the
vorticity diffuses rapidly into the non-turbulent fluid which has been engulfed by
the large eddies. These large eddies are also important for the processes by which
the turbulence gains and distributes energy from the mean flow.

A feature which free shear flows have in common with the homogeneous flows
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Figure 6.4: Smoke visualization of jet mixing layer at Reynolds number of 65,000.

discussed in Chapter 5 is that their scales continue to grow as long as the flow
remains turbulent. The dynamical equations and boundary conditions for many
free shear flows can be shown to admit to similarity solutions in which the number
of independent variables is reduced by one. According to the equilibrium similarity
principle set forth in this chapter, such flows might be expected to asymptotically
achieve such a state; and this, in fact, occurs. In the limit of infinite Reynolds
number, some such flows can even be characterized by a single time and length
scale, thus satisfying the conditions under which the simplest closure models might
be expected to work. Care must be taken not to infer too much from the ability
of a given closure model to predict such a flow, since any model which has the
proper scale relations should work.

Finally there is the important question of whether free shear flows become
asymptotically independent of their initial conditions (or source conditions). The
conventional wisdom until very recently (and that presented in all texts prior to
this one) has been that they do. If correct, this means that there is nothing
that could be done to alter the far downstream flow. As we shall see later in this
chapter, there is considerable theoretical and experimental evidence, however, that
this traditional view is wrong. This opens up previously unimagined possibilities
for flow control at the source.

In the remainder of this chapter, the averaged equations of motion will be
simplified, and similarity solutions for several ideal shear flows will be derived and
discussed in detail. The role of the large eddies will be discussed, and mecha-
nisms for turbulent entrainment will be examined. The energy balance of several
turbulent free shear flows will be studied in some detail. Finally, the effects of
confinement and non-homogeneous external boundary conditions will be consid-
ered.

6.2 The averaged equations

6.2.1 The shear layer quations

One of the most important ideas in the history of fluid mechanics is that of the
boundary layer approximation. These approximations to the Navier-Stokes equa-
tions were originally proposed by Prandtl in his famous theory for wall boundary



98 CHAPTER 6. TURBULENT FREE SHEAR FLOWS

layers. By introducing a different length scale for changes perpendicular to the
wall than for changes in the flow direction, he was able to explain how viscous
stresses could survive near the wall at high Reynolds number. These allowed the
no-slip condition at a surface to be satisfied, and resolved the paradox of how
there could be drag in the limit of zero viscosity.

It may seem strange to be talking about Prandtl’s boundary layer idea in a
section about free shear flows, but as we shall see below, the basic approximations
can be applied to all “thin” (or slowly growing) shear flows with or without a
surface. In this section, we shall show that free shear flows, for the most part,
satisfy the conditions for these “boundary layer approximations”. Hence they
belong to the general class of flows referred as “boundary layer flows”.

One important difference will lie in whether momentum is being added to the
flow at the source (as in jets) or taken out (by drag, as in wakes). A related
influence is the presence (or absence) of a free stream in which our free shear flow
is imbedded. We shall see that stationary free shear flows fall into two general
classes, those with external flow and those without. One easy way to see why
this makes a difference is to remember that these flows all spread by sharing their
momentum with the surrounding flow, or by stealing momentum from it, almost
always entraining mass from the surrounding fluid at the same time. (You don’t
have to think very hard to see that as mass is entrained, it is carries its own
momentum with it into the shear flow.) You should expect (and find) that even
a small free stream velocity (or pressure gradient or even free stream turbulence)
can make a significant difference, since the momentum carried in is mixed in with
that of the fluid particles which are already part of the turbulence. The longer
the flow develops (or the farther downstream one looks), the more these simple
differences can make a difference in how the flow spreads. In view of this, it
should be no surprise that the presence or absence of an external stream plays a
major role in determining which mean convection terms which must be retained
in the governing equations. And also in determining whether an experiment or
simulation is a valid approximation to a flow in an infinite environment, since
both most be performed in a finite box or windtunnel.

We will consider here only flows which are plane (or two-dimensional) in the
mean (although similar considerations can be applied to flows that are axisymmet-
ric in the mean, see the exercises). In effect, this is exactly the same as assuming
the flow is homogeneous in the third direction. Also we shall restrict our atten-
tion to flows which are statistically stationary, so that time derivatives of averaged
quantities can be neglected. And, of course, we have already agreed to confine
our attention to Newtonian flows at constant density.

It will be easier to abandon tensor notation for the moment, and use the
symbols x, U, u for the streamwise direction, mean and fluctuating velocities re-
spectively, and y, V, v for the cross-stream. Given all this, the mean momentum
equations reduce to:
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x-component:

U
∂U

∂x
+ V

∂U

∂y
= −1

ρ

∂P

∂x
− ∂〈u2〉

∂x
− ∂〈uv〉

∂y
+ ν

∂2U

∂x2
+ ν

∂2U

∂y2
(6.2)

y-component:

U
∂V

∂x
+ V

∂V

∂y
= −1

ρ

∂P

∂y
− ∂〈uv〉

∂x
− ∂〈v2〉

∂y
+ ν

∂2V

∂x2
+ ν

∂2V

∂y2
(6.3)

In addition, we have the two-dimensional mean continuity equation which reduces
to:

∂U

∂x
+

∂V

∂y
= 0 (6.4)

6.2.2 Order of magnitude estimates

Now let’s make an order of magnitude estimate for each of the terms. This
procedure may seem trivial to some, or hopeless hand-waving to others. The
fact is that if you fall into either of these groups, you have missed something
important. Learning to make good order-of-magnitude arguments and knowing
when to use them (and when not to use them) are two of the most important
skills in fluid mechanics, and especially turbulence. To do this right we will have
to be very careful to make sure our estimates accurately characterize the terms
we are making them for.

Naturally we should not expect changes of anything in the x-direction to scale
the same as changes in the y-direction, especially in view of the above. (This,
after all, is the whole idea of “thin” shear flow.) So let’s agree that we will pick a
length scale, say L, characteristic of changes or mean quantities in the x-direction;
i.e.

∂

∂x
∼ 1

L
(6.5)

where for now ‘∼ means “of the order of magnitude of”. And we can do the same
thing for changes of mean quantities in the y-direction by defining a second length
scale, say δ, to mean:

∂

∂y
∼ 1

δ
(6.6)

Note that both these scales will vary with the streamwise position where we eval-
uate them. A good choice for δ might be proportional to the local lateral extent
of the flow (or its “width”), while L is related to the distance from the source.

Consider the mean velocity in equation 7.10. It occurs in five different terms: U
alone; twice with x-derivatives, ∂U/∂x and ∂2U/∂x2; and twice with y-derivatives,
∂U/∂y and ∂2U/∂y2. Now it would be tempting to simply pick a scale velocity
for U , say Us, and use it to estimate all five terms, say as: Us, Us/L, Us/L

2, Us/δ,
and Us/δ

2. But this is much too näıve, and fails to appreciate the true role of the
terms we are evaluating.
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Look at the example shown in Figure 6.4. Our simple approach would provide
an appropriate estimate for a jet if we took our velocity scale equal to the mean
centerline velocity at a given streamwise location; i.e., Us(x) = Ucl(x). This is
because both the mean velocity and the changes in the mean velocity across the
flow are characterized by the centerline velocity. But by contrast, look at the
wakes shown in Figure 1.3. If we denote the free stream velocity (i.e. far away
from the wake) by Uo and the velocity at the wake centerline by Ucl, we can define
a wake deficit by

∆Ucl = Uo − Ucl (6.7)

Even relatively close to the wake generators, the wake deficit is small compared
to the free stream velocity (i.e., ∆Ucl << Uo). So the obvious choice to scale
U(x, y) would be Uo. On the other hand, an estimate for the velocity gradient
across the flow of Uo/δ would be much too big, again because the deficit is so
small. Obviously a better choice would be to use the centerline mean velocity
deficit, ∆Ucl; i.e.,

∂U

∂y
∼ ∆Ucl

δ
(6.8)

In the order of magnitude analysis below, we shall try to keep the discussion as
general as possible by using Us to characterize the mean velocity when it appears
by itself, and ∆Us to represent changes in the mean velocity. For the jet example
of the preceding paragraph, both Us and ∆Us are the same; i.e., Us = Ucl and
∆Us = Ucl. But for the wake they are different because of the external stream;
i.e., Us = Uo and ∆Us = ∆Ucl. If you can keep in mind why these differences exist
among the various flows, it will be a lot easier to both understand the results and
not confuse them.

Now we could distinguish changes of velocity in the x-direction from those in
the y-direction. But this level of complexity is not necessary (at least for the
examples considered here), especially since we have left the precise definition of
L rather nebulous. What we can do is to use the same estimate for changes in
the velocity as for the y-direction, and define our length scale L to make the
estimate based on both correct; i.e., ∂U/∂x ∼ ∆Us/L. To see why this makes
sense physically and can be reasoned (as opposed to guessed), let’s look at the
wake. Pick a spot outside, near the edge of the wake fairly close the generator
(say point A). Now proceed at constant y far downstream in x. Eventually the
wake will have spread past you and you will be close enough to the centerline so
the local mean velocity will be closer to Ucl than Uo. Obviously we have simply
traveled far enough at constant y to insure that ∆Ucl is the proper scale for the
changes in velocity in the x-direction. If the distance downstream over which this
change occurred is taken as L, then the proper estimate is easily seen to be:

∂U

∂x
∼ ∆Ucl

L
(6.9)

But this is exactly what we would have gotten by taking Us = Ucl as we agreed
above. We simply have absorbed any differences into our choice of L. When
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considering specific problems and applying similarity techniques, the seemingly
arbitrary choices here become quite precise constraints (as we shall see).

We still haven’t talked about how to estimate the velocity scale for V , the
cross-stream mean velocity component. From the continuity equation we know
that:

∂V

∂y
= −∂U

∂x
(6.10)

From our considerations above, we know that:

∂U

∂x
∼ ∆Us

L
(6.11)

If there is no mean cross flow in the external stream, then the scale for V is the
same as the scale for changes in V . Therefore,

∂V

∂y
∼ Vs

δ
(6.12)

It follows immediately that the order of magnitude of the cross-stream velocity is:

Vs ∼ ∆Us
δ

L
(6.13)

We might have expected something like this if we had thought about it. If the V -
velocity were of the same order as the U -velocity, how could the flow in any sense
be a “thin shear flow”. On the other hand, it also makes sense that Vs/Us ∝ δ/L,
since both are some measure of how the flow spreads. Note that equation 6.13
would not be the correct estimate for Vs if there were an imposed cross-flow, since
then we would have to consider V and changes in V separately (exactly as for U).

The mean pressure gradient term is always a problem to estimate at the outset.
Therefore it is better to simply leave this term alone, and see what is left at the
end. In the estimates below you will see a question mark, which simply means
we are postponing judgement until we have more information. Sometimes we will
have to keep the term simply because we don’t know enough to throw it away.
Other times it will be obvious that it must remain because there is only one term
left that must be balanced by something.

Now we have figured out how to estimate the order of magnitude of all the
terms except the turbulence terms. For most problems this turns out to be pretty
straightforward if you remember our discussion of the pressure strain-rate terms.
They so effectively distribute the energy that even that the three components of
velocity are usually about the same order of magnitude. So if we chose a turbulence
scale as simply u, then 〈u2〉 ∼ u2, 〈v2〉 ∼ u2, and 〈w2〉 ∼ u2. But what about
the Reynolds shear stress components like 〈uv〉? When acting against the mean
shear to produce energy, they tend to be well-correlated and the maximum value
of 〈uv〉/urmsvrms < 0.5. Obviously the right choice for the order of magnitude is:
〈uv〉 ∼ u2. This is not always the right choice though since some cross-stress like
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〈uw〉 are identically zero in plane flows because of homogeniety. Sometimes the
Reynolds shear stress will be identically zero at some points in the flow (like when
it is changing sign from one side to the other of a symmetry plane). When this
happens terms you neglected can sneak back into the problem. The important
point to remember is that you only estimating which terms might be the most
important most of the time, and must look again after you have analyzed or solved
the equations to see if your estimates were correct

6.2.3 The streamwise momentum equation

Let’s look now at the x-component of the mean momentum equation and write
below each term its order of magnitude.

U
∂U

∂x
+ V

∂U

∂y

Us
∆Us

L

(
∆Us

δ

L

)
∆Us

δ

= −1

ρ

∂P

∂x
− ∂〈u2〉

∂x
− ∂〈uv〉

∂y
+ ν

∂2U

∂x2
+ ν

∂2U

∂y2

?
u2

L

u2

δ
ν
∆Us

L2
ν
∆Us

δ2

Now the survival of at least one of the terms on the left-hand side of the
equation is the essence of free shear flow, since the flow is either being speeded
up or slowed down by the external flow or surroundings. Since we have chosen
the primary flow direction to be x, then the largest of these acceleration (or
deceleration) terms is the first. Therefore to see the relative importance of the
remaining terms, we need to re-scale the others by dividing all the estimates by
Us∆Us/L. Doing this we have:

U
∂U

∂x
+ V

∂U

∂y

1
∆Us

Us

= −1

ρ

∂P

∂x
− ∂〈u2〉

∂x
− ∂〈uv〉

∂y
+ ν

∂2U

∂x2
+ ν

∂2U

∂y2

?
u2

Us∆Us

u2

Us∆Us

(
L

δ

)
ν

UsL

ν

Usδ

(
L

δ

)

So what do these mean? And how do we decide whether they are of the same
order as our leading term, or much less? (Note that if any are bigger than our first
term, it either means we have scaled it wrong, or that we guessed wrong about
which term was the largest.) The beginning of the answer lies in remembering
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that this is a book about turbulence. Therefore almost all the interesting flows are
at high Reynolds number. But what does this mean? Now we can say. It could
mean the viscous terms in the mean momentum equation are negligible, which in
turn means that:

UsL

ν
>> 1

and

Usδ

ν
>>

L

δ

Obviously the second criterion is much more stringent, since L/δ is typically of
order 10 or less for our “thin” shear layers. When Usδ/ν > 1000, the contributions
of the viscous stresses are certainly negligible, at least as far as the x-component
of the mean momentum equation is concerned. But if Usδ/ν ∼ 100 only, this is a
pretty marginal assumption, and you might want to retain the last term in your
analysis. Such is unfortunately the case in many experiments that are often at
quite low Reynolds numbers.

So, what then, you ask, do we do about the turbulence terms? To repeat: this
is a book about TURBULENCE! Which means there is no way we are going to
throw away all the turbulence terms on the right-hand side of the equation. There
is no magic or hocus-pocus about this; you simply can’t have turbulence without
at least one turbulence term. And if there is no turbulence, we really aren’t too
interested.

So, what does this tell us? It tells us about δ! Surprised? I bet you thought
it would tell us about u, right? Not so. Look at the right-hand side of the second
equation on the previous page and the orders of magnitude below it. Almost
always, u < Us, sometimes much less and almost never larger. Then the biggest
turbulence term is the one involving the Reynolds shear stress, ∂〈−uv〉/∂y, which
we have estimated as [u2/(Us∆Us)](L/δ). Hence there can be no turbulence terms
at all unless:

δ

L
∼ u2

Us∆Us

Wow! Look what we have learned about turbulence without ever solving a single
equation. We know how the growth of our free shear flow relates to the turbu-
lence intensity – at least in terms of order of magnitude. The similarity theories
described below will even be able to actually deduce the x-dependence of δ, again
without actually solving the equations.

Does the argument above mean the other turbulence term is negligible since it
is only of order u2/Us∆Us? Well, no question we should expect it to be smaller,
typically less than 5%. But unlike the viscous terms, this term often does not
get smaller the farther we go in the streamwise direction. So the answer depends
on the question we are asking and how accurate we want our answer to be. If
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we are asking only first order questions and are willing to accept errors in our
solutions (or experiments) to within a 5–10 percent, then this normal stress term
is certainly negligible.

Before we go on, consider the following: since δ/L < 0.1 typically, to first order
free shear flows do not grow at all! So before you place your bets about whether
dδ/dx for a particular shear flow, for example, is 0.095 instead of 0.09 (turbulence
wars have been waged over less), then you better make sure you are dealing with a
full deck — meaning these second order (and often neglected) terms had better be
retained in any calculation or experimental verification (like momentum or energy
balances).

Much of the confusion in the literature about free shear flows comes from the
failure to use second order accuracy to make second order statements. And even
more unbelievably, most attempts to do so-called ‘code validation’ of second-order
turbulence models are based on measurements that are only first order accurate.
Now I know you think I am kidding — but try to do a simple momentum balance
on the data to within order u2/Us∆Us. Did I hear you say it was ridiculous to
use second-order equations (like the Reynolds stress equations or even the kinetic
energy equation) and determine constants to three decimal places using first order
accurate data?

Hopefully you have followed all this. If not, go forward and “faith” will come
to you. I’ll summarize how we do this:

• You have to look very carefully at the particular flow you wish to analyze.

• Then, based on physical reasoning and data (if you have it), you make
estimates you think are appropriate.

• Then you use these estimates to decide which terms you have to keep, and
which you can ignore.

• And when you are completely finished, you carefully look back to make sure
that all the terms you kept really are important and remain important as
the flow develops.

Finally, if you are really good at this, you look carefully to make sure that all
the terms you kept do not all vanish at the same place (by going from positive
to negative, for example). If this happens, then the terms you neglected may in
fact be the only terms left in the equation that are not exactly zero — oops! This
can make for some very interesting situations. (The famous “critical layer” of
boundary layer stability theory is an example of this.)

Example: Turbulence through a contraction Consider the kinetic en-
ergy balance of a turbulence flow, homogeneous in lateral planes that is being
accelerated through a contraction so that ∂U/∂x > 0. First use the component
Reynolds stress equations to show that the 〈u2〉 is decreased by the production
term (and the pressure strain-rate term as well), and that 〈v2〉 is increased. Then
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using the continuity equation together with l’Hôpital’s rule show that to leading
order at the centerline (assume symmetry around this line) the turbulence kinetic
energy equation reduces to:

U
∂k

∂x
= −[〈u2〉 − 〈v2〉]∂U

∂x
(6.14)

Assuming that upstream 〈u2〉 > 〈v2〉, re-examine your assessment of which terms
are important near the points where k is maximal and where 〈u2〉 = 〈v2〉. (Note
that these points occur nearly, but not quite, in the same place.)

6.2.4 The transverse momentum equation

Now we must also consider the transverse or y-momentum equation. The most
important thing we have to remember is that the y-equation can NOT be con-
sidered independently from the x-momentum equation. We would never consider
trying to simplify a vector like (a, b, c) by dividing only one component by S say
to produce (Sa, b, c), since this would destroy the whole idea of a vector as having
a direction. Instead you would re-scale as (Sa, Sb, Sc) to preserve the direction.
We must do the same for a vector equation. We have already decided that the
first term on the left-hand side of the x-momentum equation was the term we
had to keep, and we divided by its order of magnitude, Us∆Us/L, to make sure
it was of order one. Thus we have already decided how we are going to scale all
the components of the vector equation, and so we must do exactly the same thing
here. But first we must estimate the order of magnitude of each term, exactly as
before.

Using our previous results, here’s what we get:

U
∂V

∂x
+ V

∂V

∂y

Us
∆Usδ/L

L

(
∆Us

δ

L

)
∆Usδ/L

δ

= −1

ρ

∂P

∂y
− ∂〈uv〉

∂x
− ∂〈v2〉

∂y
+ ν

∂2V

∂x2
+ ν

∂2V

∂y2

?
u2

L

u2

δ
ν
∆Usδ/L

L2
ν
∆Usδ/L

δ2

Now dividing each term by Us∆Us/L, exactly as before, we obtain:

U
∂V

∂x
+ V

∂V

∂y

δ

L

∆Us

Us

(
δ

L

)
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= −1

ρ

∂P

∂y
− ∂〈uv〉

∂x
− ∂〈v2〉

∂y
+ ν

∂2V

∂x2
+ ν

∂2V

∂y2

?
u2

Us∆Us

u2

Us∆Us

(
L

δ

)
ν

UsL

(
δ

L

)
ν

Usδ

Unless you have seen this all before, the left-hand side is probably a surprise:
none of the mean convection terms are of order one! In fact the only estimated
term that is of order one in the whole equation is ∂〈v2〉/∂y, and only because
we have already agreed that (u2/Us∆Us)(L/δ) had to be of order one to keep
a turbulence term in the x-momentum equation. Of course, there cannot be an
equation with only a single term equal to zero, unless we have badly over-estimated
its order of magnitude. Fortunately there is the pressure term left to balance it, so
to first order in δ/L ∼ u2/Us∆Us, the y-momentum equation reduces to simply:

0 ≈ −1

ρ

∂P

∂y
− ∂〈v2〉

∂y
(6.15)

This simple equation has an equally simple interpretation. It says that the change
in the mean pressure is only due to the radial gradient of the transverse component
of the Reynolds normal stress, 〈v2〉.

We can integrate equation 6.15 across the shear layer from a given value of y
to infinity (or anywhere else for that matter) to obtain:

P (x, y) = P (x,∞)− ρ〈v2〉, (6.16)

assuming of course the free stream value of 〈v2〉 to be zero. If the free stream is
at constant (or zero) mean velocity, then P (x,∞) = P∞ = constant, so we can
write simply:

P (x, y) = P∞ − ρ〈v2〉 (6.17)

Either of these can be substituted into the x-momentum equation to eliminate
the pressure entirely, as we shall show below.

Now since 〈v2〉 << ∆U2
s typically, P ≈ P∞, at least to first order in u2/∆U2

s .
Therefore one might be tempted to conclude that the small pressure changes across
the flow are not important. And they are not, of course, if only the streamwise
momentum is considered. But without this small mean pressure gradient across
the flow, there would be no entrainment and no growth of the shear layer. In other
words, the flow would remain parallel. Clearly whether an effect is negligible or
not depends on which question is being asked.

6.2.5 The free shear layer equations

If we assume the Reynolds number is always large enough that the viscous terms
can be neglected, then as noted above, the pressure term in the x-momentum
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equation can be evaluated in terms of P∞ and 〈v2〉. Thus, to second-order in
u2/Us∆Us or δ/L, the momentum equations for a free shear flow reduce to a
single equation:

U
∂U

∂x
+

{
V
∂U

∂y

}
= −dP∞

dx
− ∂

∂y
〈uv〉 −

{
∂

∂x

[
〈u2〉 − 〈v2〉

]}
(6.18)

As we have seen above, the second term on the left-hand side (in curly brackets)
may or may not be important, depending on whether Us = ∆Us or ∆Us/Us <<
1. Clearly this depends on the velocity deficit (or excess) relative to the free
stream. The second term in brackets on the right-hand side is also second-order
(in u2/Us∆Us ∼ δ/L) compared to the others, and so could rightly be neglected.
It has been retained for now since in some flows it does not vanish with increasing
distance from the source. Moreover, it can be quite important when considering
integrals of the momentum equation, since the profiles of 〈u2〉 and 〈v2〉 do not
vanish as rapidly with increasing y as do the other terms.

6.3 Two-dimensional Turbulent Jets

Turbulent jets are generated by a concentrated source of momentum issuing into
an ambient environment. The state of the environment and the external boundary
conditions are very important in determining how the turbulent flow evolves.
The simplest case to consider is that in which the environment is at rest and
unbounded, so all the boundary conditions are homogeneous. The jet itself can
be assumed to issue from a line source or a slot as shown in Figure 6.5. The jet
then evolves and spreads downstream by entraining mass from the surroundings
which are at most in irrotational motion induced by the vortical fluid within the
jet. But no new momentum is added to the flow downstream of the source, and
it is this fact that distinguishes the jet from all other flows. As we shall see
below, however, that the rate at which momentum crosses any x-plane is not
quite constant at the source value due to the small streamwise pressure gradient
arising from the turbulence normal stresses.

The averaged continuity equation can be integrated from the centerline (where
it is zero by symmetry) to obtain V , i.e.,

V = −
∫ y

0

∂U

∂x
dỹ (6.19)

It immediately follows that the V velocity at ±∞ is given by:

V∞ = −V−∞ = − d

dx

∫ ∞

0
U(x, y)dy (6.20)

Twice the integral represents the total volume flow rate crossing a given x-plane.
Therefore it makes sense that the rate of increase of this integral is the entrainment
velocity, V∞. Obviously, V∞ cannot be zero if the jet is to spread, at least in a
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Figure 6.5: Sketch of plane jet showing jet source, coordinate system and typical
mean velocity profile.

two-dimensional flow. It is easy to see that the entrainment velocity calculated
from the integral is consistent with our order of magnitude estimate above (i.e.,
V ∼ ∆Usδ/L). Note that the integral makes no sense if the mean velocity U does
not go to zero with increasing |y|.

If the free stream is assumed to have zero streamwise velocity, then the scales
for the velocity and gradients of it are the same, so the equations reduce to simply
equation 7.16 and the mean continuity equation. The latter can be multiplied by
U to yield:

U

{
∂U

∂x
+

∂V

∂y

}
= 0 (6.21)

When this is added to equation 7.16 the terms can be combined to obtain:

∂

∂x
U2 +

∂

∂y
UV +

∂

∂y
〈uv〉+ ∂

∂x

[
〈u2〉 − 〈v2〉

]
= 0 (6.22)

This can be integrated across the flow for any given value of x to obtain:

d

dx

∫ ∞

−∞
[U2 + (〈u2〉 − 〈v2〉)]dy = 0 (6.23)

where we have assumed that U , 〈u2〉, and 〈v2〉 vanish as |y| → ∞. (Remember
these assumptions the next time someone tries to tell you that a small co-flowing
stream and modest background turbulence level in the external flow are not im-
portant.)

Equation 6.23 can in turn be integrated from the source, say x = 0, to obtain:

Mo =
∫ ∞

−∞
[U2 + (〈u2〉 − 〈v2〉)]dy (6.24)

where Mo is the rate at which momentum per unit mass per unit length is added
at the source. The first two terms of the integrand are the flux of streamwise
momentum due to the mean flow and the turbulence. The last term is due to the
streamwise pressure gradient obtained by integrating the y-momentum equation.
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Equation 6.24 is a very powerful constraint, and together with the reduced
governing equations allows determination of a similarity solution for this problem.
It also is of great value to experimentalists, since it can be used to confirm whether
their measurements are valid and whether the flow indeed approximates a plane
jet in an infinite environment at rest. Be forewarned, most do not! And the
explanations as to why range from hilarious to pathetic. Consider this, if you
measure the velocity moments to within say 1%, then you should be able to
estimate the integral even more accurately. The reason is that the random errors
are reduced by the integration in proportion to the inverse of the square root of
the number of points you used in the integration – if the errors are really random
and statistically independent of each other. (Note that this is exactly like adding
the statistically independent random numbers in Chapter 2.) So be very wary of
measurements which have not been tested against the momentum integral — for
this and all flows. Unfortunately there is usually a reason why the authors fail to
mention it: they would rather you not know.

6.3.1 Similarity analysis of the plane jet

Foreword The results of this section are VERY MUCH at odds with those in
all texts, including the most recent. There is an increasing body of literature to
support the position taken however, especially the multiplicity of solutions and the
role of upstream or initial conditions. Since these ideas have a profound effect on
how we think about turbulence, it is important that you consider both the old and
the new, and be aware of why the conclusions are different.2

The message you should take from the previous section is that regardless of
how the plane jet begins, the momentum integral should be constant at Mo. Note
that Schneider (1985) has shown that the nature of the entrained flow in the
neighborhood of the source can modify this value, especially for plane jets. Also
the term 〈u2〉 − 〈v2〉, while important for accounting for the momentum balance
in experiments, can be neglected in the analysis below with no loss in generality.

The search for similarity solutions to the averaged equations of motion is ex-
actly like the approach utilized in laminar flows (e.g., Batchelor Fluid Dynamics
1967) except that here there are more unknowns than equations, i.e., the averaged
equations are not closed. Thus solutions are sought which are of the form:

U = Us(x)f(y, ∗) (6.25)

−〈uv〉 = Rs(x)g(y, ∗) (6.26)

(6.27)

2This section has been taken in part from George 1995 ”Some new ideas for similarity of
turbulent flows”, Turbulence, Heat and Mass Transfer, Lisbon 1994, (Hanjalic and Pereira,
eds.), 24 - 49, Elsevier, Amsterdam. Also of interest might be the paper that started this line
of thinking: George 1989 ”The Self-Preservation of Turbulent Flows and Its Relation to Initial
Conditions and Coherent Structures”, in Advances in Turbulence, (George and Arndt, eds.), 39
– 73, Hemisphere (now Bacon and Francis), NY.
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where

y = y/δ(x) (6.28)

and where ∗ represents any dependence on upstream (or source) conditions we
might not have thought of yet. The scale functions are functions of x only, i.e.,
Us = Us(x) Rs = Rs(x) and δ = δ(x) only. Note that the point of departure from
the traditional turbulence analyses was passed when it was not arbitrarily decided
that Rs = U2

s , etc. (c.f., Tennekes and Lumley 1972, Townsend 1976, Pope 2000).
Now lest you think there is something weird about the way we have written

the form of the solutions we say we are looking for, consider this. Suppose you
were looking for some x-dependent quantities with which you could normalize
the profiles to make them all collapse together — like any experimentalist almost
always does. Such a search is called the search for “scales”, meaning “scales”
which collapse the data. Now precisely what does “collapse the data” really mean?
Exactly this: “collapse the data” means that the form of the solution must be an
x-independent solution to the governing equations. But this is exactly what we
are looking for in equations 6.25 and 6.26. Obviously we need to plug them into
the averaged equations and see if such a solution is possible. We already know
which terms in these equations are important. What we want to do now is to see
if these governing equations admit to solutions for which these terms remain of
equal importance throughout the jet development. These are called equilibrium
similarity solutions. Note that for any other form of solution, one or more terms
could die off, so that others dominate.

Differentiating equations 6.25 and 6.26 using the chain-rule, substituting into
the averaged momentum equation, and clearing terms yields:[

δ

Us

dUs

dx

]
f 2 −

[
δ

Us

dUs

dx
+

dδ

dx

]
f ′
∫ y

0
f(y′)dy′ =

[
Rs

U2
s

]
g′ (6.29)

Now, all of the x-dependence is in the square bracketed terms, so equilibrium
similarity solutions are possible only if all the bracketed terms have the same
x-dependence, i.e.,

dδ

dx
∝ δ

Us

dUs

dx
∝ Rs

Us

(6.30)

We can define the coefficients of proportionality to be n and B respectively; i.e.,

dδ

dx
= n

δ

Us

dUs

dx
(6.31)

dδ

dx
= B

Rs

Us

(6.32)

Note that n and B can at most depend on the details of how the flow began; i.e.,
the mystery argument “∗”.
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Substitution into the momentum integral yields to first order,

AU2
s δ = Mo (6.33)

where

A ≡
∫ ∞

0
f 2(y, ∗)dy (6.34)

A also can at most depend only on how the flow began (i.e., ∗), since every other
dependence has been eliminated.

Now we learn somthing quite remarkable. Since Mo is independent of x, then
the only possible value of n is n = −1/2. It follows immediately that:

Us ∝ M1/2
o δ−1/2 (6.35)

It is easy to see that all of the relations involving Us are proportional to dδ/dx,
leaving only

−1

2

{
f 2 − f ′

∫ y

0
f(y′)dy′

}
=

[
Rs

U2
s dδ/dx

]
g′ (6.36)

Thus the only remaining necessary condition for similarity is

Rs ∝ U2
s

dδ

dx
(6.37)

Note that, unlike the similarity solutions encountered in laminar flows, it is
possible to have a jet which is similar without having some form of power law
behavior. In fact, the x-dependence of the flow may not be known at all because
of the closure problem. Nonetheless, the profiles will collapse with the local length
scale.

In fact, it is easy to show that the profiles for all plane jets will be alike, if
normalized properly, even if the growth rates are quite different and they began
with quite different source conditions. To show this, define the scale velocity Us

to be the centerline velocity Ucl by absorbing an appropriate factor into the profile
function f(y). (In fact, it will now have the value unity at y = 0.) Also, the entire
factor in brackets on the right-hand side of equation 6.36 can be absorbed into
the Reynolds stress profile,g(y); i.e., by defining g̃(y, ∗) to be:

g̃(y, ∗) =
[

Rs

U2
s dδ/dx

]
g(y, ∗) (6.38)

Finally, if the length scale is chosen the same for all flows under consideration
(e.g., the half-width, say δ1/2, defined as the distance between the center and
where U = Ucl/2), then the similarity equation governing all jets reduces to:

f 2 + f ′
∫ y

0
f(y′)dy′ = −2g̃′ (6.39)
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Figure 6.6: Sketch of net mass flow crossing any downstream plane for round jet
as function of distance from the source.

Thus all jets, regardless of source conditions, will produce the same similarity
velocity profile, when scaled with Ucl and δ1/2. This will not be true for the
Reynolds stress, however, unless the coefficient of proportionality between Rs and
U2
s dδ/dx is the same for all plane jets. In general, it is not; so here is where the

dependence on source conditions shows up.

It is immediately obvious from equation 6.36 that the usual arbitrary choice of
Rs = U2

s considerably restricts the possible solutions to those for which dδ/dx =
constant, or plane jets which grow linearly. However, even if the growth were
linear under some conditions, there is nothing in the theory to this point which
demands that the constant be universal and independent of how the jet began.

The idea that jets might all be described by the same asymptotic growth rate
stems from the idea of a jet formed by a point source of momentum only, say ρMo.
Such a source must be infinitesimal in size, since any finite size will also provide
a source of mass flow. In the absence of scaling parameters other than distance
from the source, x, the only possibilities are Us ∝ (Mo/x)

1/2, Rs ∝ Mo/x, and
δ ∝ x. Obviously Rs = U2

s , and the constants of proportionality can be assumed
“universal” since there is only one way to create a point source jet.

The problem with the point source idea is not in the idea itself, but that it
has been accepted for so long by so many without justification as the asymptotic
state of all finite source jets. The usual line of argument (e.g., Monin and Yaglom
1972) (if one is presented at all) is the just a plausiblity argument that goes like
this. The jet entrains mass, and the mass flow of the jet increases with distance
downstream like that shown in Figure 6.6. Since the mass that has been entrained
ultimately overwhelms that added at the source, it is argued that the latter can
be neglected. Hence the far jet is indistinguishable from a point source jet.

And what is the experimental proof offered to substantiate this plausible
sounding argument? Precisely that the profiles of U/Ucl collapse to a single pro-
file for all types of initial conditions. But as was demonstrated above, the mean
momentum equation tells us that the mean velocity profiles will collapse to a sin-
gle profile no matter what! If there is a dependence on the initial conditions it
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can only show up in the other turbulence moments, in profiles of the Reynolds
shear stress normalized by U2

cl (instead of dδ/dx), and, of course, in dδ/dx itself.
And guess what quantities no two experiments ever seem to agree on? — All of
the above! Could all those experiments plus this nice theory with virtually no
assumptions be wrong? Many still think so. It is truly amazing how much good
science people will throw away in order to hang-on to a couple of ideas that were
never derived in the first place but only assumed: in this case, Rs = U2

s and the
asymptotic independence of upstream conditions. But then there are still many
people who believe the world is flat.

George (1989) demonstrated for an axisymmetric jet that even simple dimen-
sional analysis suggests that the classical theory is wrong, and the same arguments
apply here. Suppose that in addition to momentum, mass is added at the source
at a rate of ρmo. Now there is an additional parameter to be considered, and as a
consequence, an additional length scale given by L = m2

0/Mo. Thus the most that
can be inferred from dimensional analysis is that δ/x, Usx

1/2/M1/2
o and Rsx/Mo

are functions of x/L, with no insight offered into what the functions might be.

6.3.2 Implications of the Reynolds stress equations

George 1989 further argued that some insight into the growth rate of the jet can
be obtained by considering the conditions for similarity solutions of the higher
moment equations, in particular the kinetic energy equation. The choice of the
kinetic energy equation for further analysis was unfortunate since it implicitly as-
sumed that the three components of kinetic energy all scaled in the same manner.
This is, in fact, true only if dδ/dx = const, which is certainly not true a priori for
turbulent shear flows. Therefore, here the individual component equations of the
Reynolds stress will be considered (as should have been done in George 1989).

For the plane jet the equation for 〈u2〉 can be written to first order (Tennekes
and Lumley 1972) as

U
∂〈u2〉
∂x

+ V
∂〈u2〉
∂y

(6.40)

=
2

ρ
〈p∂u
∂x

〉 +
∂

∂y

{
−〈u2v〉

}
− 2〈uv〉∂U

∂y
− 2εu

where εu is the energy dissipation rate for 〈u2〉.
By considering similarity forms for the new moments like

1

2
〈u2〉 = Ku(x)k(η) (6.41)

〈p∂u
∂x

〉 = Pu(x)pu(η) (6.42)

−1

2
〈u2v〉 = Tu2v(x)t(η) (6.43)

εu = Du(x)d(η) (6.44)
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and using Rs = U2
s dδ/dx, it is easy to show that similarity of the 〈u2〉-equation is

possible only if

Ku ∝ U2
s (6.45)

Pu ∝ U3
s

δ

dδ

dx
(6.46)

Tu2v ∝ U3
s

dδ

dx
(6.47)

Du ∝ U3
s

δ

dδ

dx
(6.48)

All of these are somewhat surprising: The first (even though a second moment
like the Reynolds stress) because the factor of dδ/dx is absent; the second, third
and fourth because it is present.

Similar equations can be written for the 〈v2〉, 〈w2〉, and 〈−uv〉-equations; i.e.

U
∂〈v2〉
∂x

+ V
∂〈v2〉
∂y

(6.49)

= 2〈p∂v
∂y

〉 +
∂

∂y

{
−〈v3〉 − 2〈pv〉

}
− 2εv

U
∂〈w2〉
∂x

+ V
∂〈w2〉
∂y

(6.50)

= 2〈p∂w
∂z

〉 +
∂

∂y

{
−〈w2v〉

}
− 2εw

U
∂〈uv〉
∂x

+ V
∂〈uv〉
∂y

(6.51)

= 〈p
(
∂u

∂y
+

∂v

∂x

)
〉 +

∂

∂y

{
−〈uv2〉

}
− 〈v2〉∂U

∂y

When each of the terms in these equations is expressed in similarity variables,
the resulting similarity conditions are:

Dv ∝ Pv ∝
UsKv

δ

dδ

dx
(6.52)

Dw ∝ Pw ∝ UsKw

δ

dδ

dx
(6.53)

Tv3 ∝ UsKv

δ

dδ

dx
(6.54)

Tw2v ∝ UsKw

δ

dδ

dx
(6.55)
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and the real surprise,

Kv ∝ U2
s

(
dδ

dx

)2

(6.56)

There is an additional equation which must be accounted for: namely that the
sum of the pressure strain-rate terms in the component energy equations be zero
(from continuity). Thus,

〈p∂u
∂x

〉+ 〈p∂v
∂y

〉+ 〈p∂w
∂z

〉 = 0 (6.57)

or in similarity variables,

Pu(x)pu(η) + Pv(x)pv(η) + Pw(x)pw(η) = 0 (6.58)

This can be true for all η only if

Pu ∝ Pv ∝ Pw (6.59)

An immediate consequence is that

Du ∝ Dv ∝ Dw (6.60)

From equations 6.46, 6.52 and 6.53 it also follows that the constraint imposed
by 6.59 can be satisfied only if

Ku ∝ Kv ∝ Kw (6.61)

But from equation 6.56, this can be true only if

dδ

dx
= constant (6.62)

The relations given by equations 6.61 and 6.60 were assumed without proof in the
George 1989 analysis. The additional constraint imposed by equation 6.62 was
not derived, however, and arises from the additional information provided by the
pressure strain-rate terms.

Hence, similarity solutions of the Reynolds stress equations are possible only
if

Ds(x) ∝
U3
s

δ
(6.63)

It is an immediate consequence of the earlier discussion on the nature of the
dissipation that there are only two possibilities for this to occur:

i) Either the local Reynolds number of the flow is constant so that the effect of
the dissipation on the energy containing eddies (and those producing the Reynolds
stress as well) does not vary with downstream distance; or
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ii) The local turbulence Reynolds number is high enough so that the relation
ε ∝ q3/L is approximately valid (for a physical length L ∝ δ!).

Unlike some flows (like the axisymmetric jet or plane wake) where the local
Reynolds number is constant, for the plane jet it varies with downstream distance.
Therefore the only possibility for similarity at the level of the Reynolds stresses is
(ii). This can occur only when the turbulence Reynolds number is large enough,
typically 104. Since the local Reynolds number for the plane jet continues to in-
crease with increasing downstream distance, this state will eventually be reached.
The higher the source Reynolds number, the closer to the exit plane the similarity
of the moments will be realized.

6.4 Other Free Shear Flows

The plane jet is but one of the flows which can be analyzed in the manner de-
scribed above. A few of the possibilities which have already been analyzed are
the axisymmetric jet, plane and axisymmetric wakes (George 1989, 1995 Hussein
et al. 1994, Moser et al. 1997, George and Davidson 2004, Johansson et al. 2005,
Johansson and George 2006, Ewing et al. 2007). Other possibilities include free
shear layers, thermal plumes and the self-propelled wake to mention but a few.
All of these fall into the two categories described above: Flows which evolve at
constant Reynolds number, and flows which do not. The axisymmetric jet and
the plane wake are of the former type, and hence when properly scaled (using
the techniques described above) will yield Reynolds number and source depen-
dent solutions. These have been already discussed in detail in the cited papers
and will not be discussed further here. The second type of flows (those for which
the local Reynolds number varies with streamwise distances) also fall into two
types: Those for which the local Reynolds number increases downstream (like the
plane jet, plume or the shear layer), and those for which it decreases (like the
axisymmetric wake).

When the Reynolds number is increasing with x, the flow will eventually reach
the state of full similarity where all of the mean and turbulence quantities col-
lapse. This state will be characterized by the infinite Reynolds number dissipation
relation ε ∝ q3/δ which will be manifested in the approach of dδ/dx to its asymp-
totic value. (This has been shown above to be constant for the plane jet, but will
be different for wakes, for example.) Generally this approach will coincide with
a turbulent Reynolds number of q4/εν ∼ 104 and the emergence in the spectra
of the k−5/3 range. Before this, the lack of collapse will be most evident in those
quantities which depend directly on dδ/dx, like 〈−uv〉, 〈v2〉, etc. Other quantities
like the mean flow will collapse much earlier, and as noted above will collapse to
profiles independent of source conditions. The latter will not be the case for the
second moment quantities since a dependence in the asymptotic value of dδ/dx
will result in differences in the Reynolds stress equations themselves.

Perhaps the most troubling (and for that reason the most interesting) flows
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are those where the local Reynolds number is decreasing — like the axisymmet-
ric wake. In these cases, the mean velocity profiles will collapse, assuming the
Reynolds number to be large enough that the viscous terms in the mean mo-
mentum equation are negligible. The asymptotic growth rate (corresponding to
ε ∝ q3/δ or in the case of the axisymmetric wake, δ ∝ x1/3) will only be achieved
as long as the local Reynolds number is high enough (again q4/εν ∝ 104). As
soon as it drops below this value, the growth rate and scale parameters will begin
to deviate (perhaps substantially) from the asymptotic power law forms. The
turbulence quantities will begin to reflect this in the lack of collapse — again first
noticeable in quantities with v2, etc. which have a direct dependence on dδ/dx.
The mean velocity profile, however, will continue to collapse when scaled in local
variables. The same will be true for flows in which the source Reynolds number
is not high enough for the flow to ever achieve the requisite turbulence Reynolds
number — the mean velocity will collapse even though the x-dependence will be all
wrong — at least if asymptotic behavior is expected. To further confuse matters,
the axisymmetric wake eventually finds a new low Reynolds number similarity
solution state, in which it stays for ever.
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Chapter 7

WALL-BOUNDED
TURBULENT FLOWS

7.1 Introduction

Without the presence of walls or surfaces, turbulence in the absence of density
fluctuations could not exist. This is because it is only at surfaces that vorticity
can actually be generated by an on-coming flow is suddenly brought to rest to
satisfy the no-slip condition. The vorticity generated at the leading edge can then
be diffused, transported and amplified. But it can only be generated at the wall,
and then only at the leading edge at that. Once the vorticity has been generated,
some flows go on to develop in the absence of walls, like the free shear flows we
considered earlier. Other flows remained “attached” to the surface and evolve
entirely under the influence of it. These are generally referred to as “wall-bounded
flows” or “boundary layer flows”.

The most obvious causes for the effects of the wall on the flow arise from the
wall-boundary conditions. In particular,

• The kinematic boundary condition demands that the normal velocity of
the fluid on the surface be equal to the normal velocity of the surface. This
means there can be no flow through the surface. Since the velocity normal
to the surface cannot just suddenly vanish, the kinematic boundary condi-
tion ensures that the normal velocity components in wall-bounded flows are
usually much less than in free shear flows. Thus the presence of the wall
reduces the entrainment rate. Note that viscosity is not necessary in the
equations to satisfy this condition, and it can be met even by solutions to
to the inviscid Euler’s equations.

• The no-slip boundary condition demands that the velocity component tan-
gential to the wall be the same as the tangential velocity of the wall. If the
wall is at rest relative, then the no-slip condition demands the tangential
flow velocity be identically zero at the surface.

119
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Figure 7.1: Flow around a simple airfoil without separation.

It is the no-slip condition, of course, that led Ludwig Prandtl1 to the whole
idea of a boundary layer in the first place. Professor Prandtl literally saved fluid
mechanics from d’Alembert’s paradox: the fact that there seemed to be no drag
in an inviscid fluid (not counting form drag). Prior to Prandtl, everyone thought
that as the Reynolds number increased, the flow should behave more and more
like an inviscid fluid. But when there were surfaces, it clearly didn’t. Instead
of behaving like those nice potential flow solutions (like around cylinders, for
example), the flow not only produced drag, but often separated and produced
wakes and other free shear flows. Clearly something was very wrong, and as a
result fluid mechanics didn’t get much respect from engineers in the 19th century.
And with good reason: how useful could a bunch of equations be if they couldn’t
find viscous drag, much less predict how much? But Prandtl’s idea of the boundary
layer saved everything.

Prandtl’s great idea was the recognition that the viscous no-slip condition
could not be met without somehow retaining at least one viscous stress term in
the equations. As we shall see below, this implies that there must be at least two
length scales in the flow, unlike the free shear flows we considered in the previous
chapter for which the mean flow could be characterized by only a single length
scale. The second length scale characterizes changes normal to the wall, and make
it clear precisely which viscous term in the instantaneous equations is important.

1Prandtl was a famous German professor at Göttingen in the early 19th century, and founder
of the famous institute there which so dominated much of 20th century fluid dynamics thinking,
well into the second half of the century. Among his most famous students were T. Von Karman,
and H. Schlichting.



7.2. REVIEW OF LAMINAR BOUNDARY LAYERS 121

7.2 Review of laminar boundary layers

Let’s work this all out for ourselves by considering what happens if we try to
apply the kinematic and no-slip boundary conditions to obtain solutions of the
Navier-Stokes equations in the infinite Reynolds number limit. Let’s restrict our
attention for the moment to the laminar flow of a uniform stream of speed, Uo,
around a body of characteristic dimension, D, as shown in Figure 7.1. It is easy
to see the problem if we non-dimensionalize our equations using the free stream
boundary condition and body dimension. The result is:

D˜̃ui

D˜̃t
= − ∂˜̃p

∂ ˜̃xi

+
1

Re

∂2 ˜̃ui

∂ ˜̃x
2

j

(7.1)

where ˜̃ui ≡ ui/Uo, ˜̃xi ≡ xi/D, ˜̃t ≡ Uot/D and ˜̃p ≡ p/(ρU2
o ). The kinematic

viscosity, ν has disappeared entirely, and is included in the Reynolds number
defined by:

Re ≡ UoD

ν
(7.2)

Now consider what happens as the Reynolds number increases, due to the
increase of Uo or L, or even a decrease in the viscosity. Obviously the viscous
terms become relatively less important. In fact, if the Reynolds number is large
enough it is hard to see at first glance why any viscous term should be retained
at all. Certainly in the limit as Re → ∞, our equations must reduce to Euler’s
equations which have no viscous terms at all; i.e., in dimensionless form,

Dũi

Dt̃
= − ∂p̃

∂x̃i

(7.3)

Now if we replace the Navier-Stokes equations by Euler’s equations, this presents
no problem at all in satisfying the kinematic boundary condition on the body’s
surface. We simply solve for the inviscid flow by replacing the boundary of the
body by a streamline. This automatically satisfies the kinematic boundary con-
dition. If the flow can be assumed irrotational, then the problem reduces to a
solution of Laplace’s equation, and powerful potential flow methods can be used.

In fact, for potential flow, it is possible to show that the flow is entirely deter-
mined by the normal velocity at the surface. And this is, of course, the source of
our problem. There is no role left for the viscous no-slip boundary condition. And
indeed, the potential flow has a tangential velocity along the surface streamline
that is not zero. The problem, of course, is the absence of viscous terms in the
Euler equations we used. Without viscous stresses acting near the wall to retard
the flow, the solution cannot adjust itself to zero velocity at the wall. But how
can viscosity enter the equations when our order-of-magnitude analysis says they
are negligible at large Reynolds number, and exactly zero in the infinite Reynolds
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number limit? At the end of the nineteenth century, this was arguably the most
serious problem confronting fluid mechanics.

Prandtl was the first2 to realize that there must be at least one viscous term
in the problem to satisfy the no-slip condition. Therefore he postulated that the
strain rate very near the surface would become as large as necessary to compensate
for the vanishing effect of viscosity, so that at least one viscous term remained.
This very thin region near the wall became known as Prandtl’s boundary layer, and
the length scale characterizing the necessary gradient in velocity became known
as the boundary layer “thickness”.

Prandtl’s argument for a laminar boundary layer can be quickly summarized
using the same kind of order-of-magnitude analysis we used in Chapter 6. For the
leading viscous term:

ν
∂2u

∂y2
∼ ν

Us

δ2
(7.4)

where δ is the new length scale characterizing changes normal to the plate near
the wall and we have assumed ∆Us = Us. In fact, for a boundary layer next to
walls driven by an external stream these can both be taken to be the free stream
speed U∞. For the leading convection term:

U
∂U

∂x
∼ U2

s

L
(7.5)

The viscous term can survive only if it is the same order of magnitude as the
convection term. Hence it follows that we must have:

ν
Us

δ2
∼ U2

s

L
(7.6)

This in turn requires that the new length scale δ must satisfy:

δ ∼
[
νL

Us

]1/2
(7.7)

or
δ

L
∼
[

ν

UsL

]1/2
(7.8)

Thus, for a laminar flow, δ grows like L1/2. Now if you go back to your fluid
mechanics texts and look at the similarity solution for a Blasius boundary layer,
you will see this is exactly right if you take L ∝ x, which is what we might have
guessed anyway.

2Actually about the same time a Swedish meteorologist named Ekman realized the same
thing must be true for rotating flows with a horizontal surface, like the earth’s boundary layer,
for example. He invented what we now call the Ekman layer, which had the really strange
characteristic that the flow direction changed with height. You can actually observe this on
some days simply by looking up and noting the clouds at different heights are moving in different
directions.
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It is very important to remember that the momentum equation is a vector
equation, and therefore we have to scale all components of this vector equation
the same way to preserve its direction. Therefore we must carry out the same
kind of estimates for the cross-stream momentum equations as well. For a laminar
boundary layer this can be easily be shown to reduce to:[

δ

L

]{
∂ ˜̃u

∂˜̃t
+ ˜̃u

∂ ˜̃u

∂ ˜̃x
+ ˜̃v

∂˜̃v

∂˜̃y

}
= −∂˜̃p∞

∂˜̃y
+

1

Re

[
δ

L

]{
∂2˜̃v

∂˜̃y
2

}
+

1

Re

{
∂2˜̃v

∂ ˜̃x
2

}
(7.9)

Note that a only single term survives in the limit as the Reynolds number goes
to infinity, the cross-stream pressure gradient. Hence, for very large Reynolds
number, the pressure gradient across the boundary layer equation is very small.
Thus the pressure gradient in the boundary layer is imposed on it by the flow
outside the boundary layer. And this flow outside the boundary layer is governed
to first order by Euler’s equation.

The fact that the pressure is imposed on the boundary layer provides us an easy
way to calculate such a flow. First calculate the inviscid flow along the surface
using Euler’s equation. Then use the pressure gradient along the surface from
this inviscid solution together with the boundary layer equation to calculate the
boundary layer flow. If you wish, you can even use an iterative procedure where
you recalculate the outside flow over a streamline which was been displaced from
the body by the boundary layer displacement thickness, and then re-calculate the
boundary layer, etc. Before modern computers, this was the only way to calculate
the flow around an airfoil, for example. And even now it is still used for most
calculations around aerodynamic and hydrodynamic bodies.

7.3 The “outer” turbulent boundary layer

The understanding of turbulent boundary layers begins with exactly the same
averaged equations we used for the free shear layers of Chapter 7; namely,
x-component:

U
∂U

∂x
+ V

∂U

∂y
= −1

ρ

∂P

∂x
− ∂〈u2〉

∂x
− ∂〈uv〉

∂y
+ ν

∂2U

∂x2
+ ν

∂2U

∂y2
(7.10)

y-component:

U
∂V

∂x
+ V

∂V

∂y
= −1

ρ

∂P

∂y
− ∂〈uv〉

∂x
− ∂〈u2〉

∂y
+ ν

∂2V

∂x2
+ ν

∂2V

∂y2
(7.11)

two-dimensional mean continuity

∂U

∂x
+

∂V

∂y
= 0 (7.12)

In fact, the order of magnitude analysis of the terms in this equation proceeds
exactly the same as for free shear flows. If we take Us = ∆Us = U∞, then the
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ultimate problem again reduces to how to keep a turbulence term. And, as before
this requires:

δ

L
∼ u2

Us∆Us

No problem, you say, we expected this. But the problem is that by requiring
this be true, we also end up concluding that even the leading viscous term is also
negligible! Recall that the leading viscous term is of order:

ν

Usδ

L

δ
(7.13)

compared to the unity.
In fact to leading order, there are no viscous terms in either component of the

momentum equation. In the limit as U∞δ/ν → ∞, they are exactly the same as
for the free shear flows we considered earlier; namely,

U
∂U

∂x
+

{
V
∂U

∂y

}
= −1

ρ

∂P

∂x
− ∂

∂y
〈uv〉 −

{
∂

∂x
〈u2〉

}
(7.14)

and

0 = −1

ρ

∂P

∂y
− ∂

∂y
〈v2〉 (7.15)

And like the free shear flows these can be integrated from the free stream to a
given value of y to obtain a single equation:

U
∂U

∂x
+ V

∂U

∂y
= −dP∞

dx
− ∂

∂y
〈uv〉 −

{
∂

∂x

[
〈u2〉 − 〈v2〉

]}
(7.16)

The last term in brackets is the gradient of the difference in the normal Reynolds
stresses, and is of order u2/U2 compared to the others, so is usually just ignored.

The bottom line here is that even though we have attempted to carry out an
order of magnitude analysis for a boundary layer, we have ended up with exactly
the equations for a free shear layer. Only the boundary conditions are different
— most notably the kinematic and no-slip conditions at the wall. Obviously, even
though we have equations that describe a turbulent boundary layer, we cannot
satisfy the no-slip condition without a viscous term. In other words, we are
right back where we were before Prandtl invented the boundary layer for laminar
flow! We need a boundary layer within the boundary layer to satisfy the no-slip
condition. In the next section we shall in fact show that such an inner boundary
layer exists. And that everything we analyzed in this section applies only to the
outer boundary layer — which is NOT to be confused with the outer flow which
is non-turbulent and still governed by Euler’s equation. Note that the presence of
P∞ in our outer boundary equations means that (to first order in the turbulence
intensity), the pressure gradient is still imposed on the boundary layer by the flow
outside it, exactly as for laminar boundary layers (and all free shear flows, for
that matter).
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7.4 The “inner” turbulent boundary layer

We know that we cannot satisfy the no-slip condition unless we can figure out
how to keep a viscous term in the governing equations. And we know there can
be such a term only if the mean velocity near the wall changes rapidly enough so
that it remains, no matter how small the viscosity becomes. In other words, we
need a length scale for changes in the y-direction very near the wall which enables
us keep a viscous term in our equations. This new length scale, let’s call it η.
(Note that this choice of symbol is probably a bit confusing since it is very close
to the symbol, ηK that we used for the Kolmogorov microscale. But we must
make some compromises for the sake of history, since almost the whole world calls
it η. In fact most use exactly the same symbol for the Kolmogorov microscale.)
Obviously we expect that η is going to be much smaller than δ, the boundary
layer thickness. But how much smaller?

Obviously we need to go back and look at the full equations again, and re-
scale them for the near wall region. To do this, we need to first decide how
the mean and turbulence velocities scale near the wall scale. We are clearly so
close to the wall and the velocity has dropped so much (because of the no-slip
condition) that it makes no sense to characterize anything by U∞. But we don’t
have anyway of knowing yet what this scale should be, so let’s just call it uw

(assuming uw << U∞) and define it later. Also, we do know from experiment that
the turbulence intensity near the wall is relatively high (30% or more). So there
is no point in distinguishing between a turbulence scale and the mean velocity,
we can just use uw for both. Finally we will still use L to characterize changes in
the x-direction, since these will vary even less rapidly than in the outer boundary
layer above this very near wall region we are interested in (due to the wall itself).

For the complete x-momentum equation we estimate:

U
∂U

∂x
+ V

∂U

∂y

uw
uw

L

(
uw

η

L

)
uw

η

= −1

ρ

∂P

∂x
− ∂〈u2〉

∂x
− ∂〈uv〉

∂y
+ ν

∂2U

∂x2
+ ν

∂2U

∂y2

?
u2
w

η

u2
w

L
ν
uw

L2
ν
uw

η2

where we have used the continuity equation to estimate V ∼ uwη/L near the wall.
As always, we have to decide which terms we have to keep so we know what

to compare the others with. But that is easy here: we MUST insist that at least
one viscous term survive. Since the largest is of order νuw/η

2, we can divide by
it to obtain:
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U
∂U

∂x
+ V

∂U

∂y(
uwη

ν

)
η

L

(
uwη

ν

)
η

L

= −1

ρ

∂P

∂x
− ∂〈u2〉

∂x
− ∂〈uv〉

∂y
+ ν

∂2U

∂x2
+ ν

∂2U

∂y2

?
(
uwη

ν

)
η

L

uwη

ν

η2

L2
1

Now we have an interesting problem. We have the power to decide whether
the Reynolds shear stress term survives or not by our choice of η; i.e., we can pick
uwη/ν ∼ 1 or uwη/ν → 0. Note that we can not choose it so this term blows up,
or else our viscous term will not be at least equal to the leading term. The most
general choice is to pick η ∼ ν/uw so the Reynolds shear stress remains too. (This
is called the distinguished limit in asymptotic analysis.) By making this choice
we eliminate the necessity of having to go back and find there is another layer in
which only the Reynolds stress survives — as we shall see below. Obviously if we
choose η ∼ ν/uw, then all the other terms vanish, except for the viscous one. In
fact, if we apply the same kind of analysis to the y-mean momentum equation,
we can show that the pressure in our near wall layer is also imposed from the
outside. Moreover, even the streamwise pressure gradient disappears in the limit
as uwη/ν → ∞. These are relatively easy to show and left as exercises.

So to first order in η/L ∼ ν/(uwL), our mean momentum equation for the
near wall region reduces to:

0 ≈ ∂

∂y

[
−〈uv〉+ ν

∂U

∂y

]
(7.17)

In fact, this equation is exact in the limit as uwδ/ν → ∞, but only for the very
near wall region!

Equation 7.17 can be integrated from the wall to location y to obtain:

0 = −〈uv〉 − 〈uv〉|y=0 + ν
∂U

∂y
− ν

∂U

∂y

∣∣∣∣∣
y=0

(7.18)

From the kinematic and no-slip boundary conditions at the wall we immediately
know that 〈uv〉|y=0 ≡ 0. We also know that the wall shear stress is given by:

τw ≡ µ
∂U

∂y

∣∣∣∣∣
y=0

(7.19)

Substituting this we obtain our equation for the very near wall (in the limit of
infinite Reynolds number) as:

τw
ρ

= −〈uv〉+ ν
∂U

∂y
(7.20)



7.4. THE “INNER” TURBULENT BOUNDARY LAYER 127

We immediately recognize one of the most important ideas in the history of
boundary layer theory; namely that in the limit of infinite Reynolds number the
total stress in the wall layer is constant. Not surprisingly, the wall layer is
referred to quite properly as the Constant Stress Layer. It is important not
to forget (as many who work in this field do) that this result is valid only in the
limit of infinite Reynolds number. At finite Reynolds numbers the total stress is
almost constant, but never quite so because of the terms we have neglected. This
difference may seem slight, but it can make all the difference in the world if you
are trying to build an asymptotically correct theory, or even just understand your
experiments.

Before leaving this section we need to resolve the important questions of what
is uw, our inner velocity scale. It is customary to define something called the
friction velocity, usually denoted as u∗, by:

u2
∗ ≡

τw
ρ

(7.21)

Now using this, equation 7.20 can be rewritten as:

u2
∗ = −〈uv〉+ ν

∂U

∂y
(7.22)

It should be immediately obvious that the choice is uw = u∗; in other words,
the friction velocity is the appropriate scale velocity for the wall region. It follows
immediately from our considerations above that the inner length scale is η = ν/u∗.
An interesting consequence of these choices is that the inner Reynolds number is
unity; i.e., u∗η/ν = 1, meaning that viscous and inertial terms are about the
same. But then this is precisely why we defined η as we did in the first place —
to ensure that viscosity was important.

It is important not to read too much into the appearance of the wall shear stress
in our scale velocity. In particular, it is wrong to think that it is the shear stress
that determines the boundary layer. In fact, it is just the opposite: the outer
boundary layer determines the shear stress. If you have trouble understanding
this, just think about what happens if turn off the outer flow: the boundary layer
disappears. The wall shear stress appears in the scale velocity only because of
the constant stress layer in which the Reynolds stress imposed by the outer flow
is transformed into the viscous stress on the wall.

Finally we can use our new length scale to define where we are in this near
wall layer. In fact, we can introduce a whole new dimensionless coordinate called
y+ defined as:

y+ ≡ y

η
=

yu∗

ν
(7.23)

When moments of the velocity field, for example, are normalized by u∗ (to the
appropriate power) and plotted as functions of y+, they are said to be plotted in
“inner” variables. Similarly, we can non-dimensionalize equation 7.20 using inner
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variables and rewrite it as simply:

1 = ri +
dfi
dy+

(7.24)

where if we suppress for the moment a possible x-dependence we can write:

fi(y
+) ≡ U(x, y)

u∗
(7.25)

and

ri(y
+) ≡ −〈uv〉

u2
∗

(7.26)

By contrast an “outer” dimensionless coordinate, y, is defined by:

y =
y

δ
(7.27)

In terms of these coordinates the outer equations (for the mean flow) are generally
considered valid outside of y+ = 30 or so. And the inner equations are needed
inside of y = 0.1 if we take δ = δ0.99, where δ0.99 is defined to be equal to the value
of y at which the mean velocity in the boundary layer is 0.99% of its free stream
value, U∞.

It is easy to see that the ratio of y+ to y is the local Reynolds number δ+

where

δ+ =
δu∗

ν
(7.28)

Obviously the higher the value of δ+, the closer the inner layer will be to the
wall relative to δ. On the other hand, since the wall friction (and hence u∗)
drops with increasing distance downstream, both the outer boundary layer and
inner boundary grow in physical variables (i.e., the value of y marking their outer
edge increases). Sorting all these things out can be very confusing, so it is very
important to keep straight whether you are talking about inner, outer or physical
variables.

7.5 The viscous sublayer

7.5.1 The linear sublayer

It should be clear from the above that the viscous stress and Reynolds stress
cannot both be important all the way across the constant stress layer. In fact,
inside y+ = 3, the Reynolds stress term is negligible (to within a few percent), so
very near the wall equation 7.20 reduces to:

u2
∗ ≈ ν

∂U

∂y
(7.29)
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or in inner variables:

1 ≈ dfi
dy+

(7.30)

This equation is exact right at the wall, for any Reynolds number. It can imme-
diately be integrated to obtain the leading term in an expansion of the velocity
about the wall as:

fi(y
+) = y+ (7.31)

or in physical variables

U(x, y) =
u2
∗y

ν
(7.32)

Note that some authors consider the extent of the linear sublayer to be y+ = 5,
but by y+ = 3 the Reynolds stress has already begun to evolve, making the ap-
proximations above invalid. Or said another way, the linear approximation is only
good to within about 10% at y+ = 5; and the linear approximation deteriorates
rapidly outside this. It should be obvious why this subregion very near the wall is
usually referred to as the linear sublayer. It should not be confused with the term
viscous sublayer, which extends until the mean flow is dominated by the Reynolds
stress alone at about y+ = 30.

This linear sublayer is one of the very few EXACT solutions in all of turbulence.
There are NO adjustable constants! Obviously it can be used with great advantage
as a boundary condition in numerical solutions — if the resolution is enough to
resolve this part of the flow at all. And it has great advantages for experimentalists
too. They need only resolve the velocity to y+ = 3 to be able to get an excellent
estimate of the wall shear stress. Unfortunately, few experiments can resolve this
region. And unbelievably, even some who are able to measure all the way to the
wall sometimes choose to ignore the necessity of satisfying equation 7.31 or 7.32.
Look at it this way, if these equations are not satisfied by the data, then either
the data is wrong, or the Navier-Stokes equations are wrong. If you think the
latter and can prove it, you might win a Nobel prize.

The important point is that the mean velocity profile is linear at the wall! It
is easy to show using the continuity equation and the wall boundary conditions
on the instantaneous velocity at the wall that the Reynolds stress is cubic at the
wall; i.e., −〈uv〉/u2

∗ = d3y
+3
. See if you can now use equation 7.20 to show that

this implies that a fourth order expansion of the mean velocity at the wall yields:

u+ = y+ + c4y
+4

(7.33)

where c4 = d3/4. It is not clear at this point whether c4 (and d3) are Reynolds
number dependent or not. Probably not, but they are usually taken as constant
anyway by turbulence modelers seeking easy boundary conditions. Note that this
fourth order expansion is a good description of the mean velocity only out to
y+ ≈ 7, beyond which the cubic expansion of the Reynolds stress (on which it is
based) starts to be invalid.



130 CHAPTER 7. WALL-BOUNDED TURBULENT FLOWS

Exercise: Show that the presence of a streamwise pressure gradient in the
viscous sublayer equations introduces a quadratic term into the near wall mean
velocity profile; i.e., λ+y+

2
/2 where λ+ = (ν/u3

∗)dP/dx. See if you can use your
ability to scale the y-momentum equation to show that it is imposed from the
outer flow onto the near wall layer.

7.5.2 The sublayers of the constant stress region

As we move out of the linear region very close to the wall the Reynolds stress
rapidly develops until it overwhelms the viscous stress. Also, as we move out-
ward, the mean velocity gradient slowly drops until the viscous stress is negligible
compared to the Reynolds shear stress. We call this region of adjustment where
both the viscous and Reynolds stresses are important in the mean momentum
equation, the buffer layer or buffer region. It roughly extends from about y+ = 3
to y+ = 30. On the inside viscous stresses dominate. By y+ = 30, however, the
viscous shear stress is less than 1 % percent or so of the Reynolds shear stress and
therefore nearly negligible.

Outside approximately y+ = 30, we have only:

u2
∗ ≈ −〈uv〉 (7.34)

In other words, the Reynolds shear stress is itself nearly constant. Viscous effects
on the mean flow are gone, and only the inertial terms from the fluctuating motion
remain. This remains true for increasing distance from the wall until the mean
convection terms begin to be important, which is about y/δ99 ≈ 0.1 for boundary
layers. Obviously a necessary condition for this to be true is that δ+ = δ99/η >>
300, since otherwise there will be no region where both the viscous stress and
mean convection terms are negligible. When this condition is satisfied, the region
of approximately constant Reynolds stress is referred to as the constant Reynolds
stress layer or inertial sublayer.

We will have much more to say about the inertial sublayer later, after we
consider boundary layers with pressure gradient and channel flows. But note for
now that there are many in the turbulence community who ignore this necessary
condition for its existence. This is especially true when interpreting the results of
experiments and DNS, most of which are at low Reynolds number and thus never
achieve a real inertial sublayer. In particular, you should be quite skeptical when
you find conceptual and computational models based on them, as many are. High
Reynolds number boundary layers with a true inertial sublayers quite possibly
behave very differently; but at this writing we are only beginning to find out. But
we have learned enough to be quite suspicious.

Figure 7.2 summarizes the important regions of a turbulent boundary layer.
The constant stress layer has two parts: a viscous sublayer and an inertial sublayer.
The viscous sublayer itself has two identifiable regions: the linear sublayer where
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Free Stream
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Equations
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30
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Inertial Sublayer

Meso Layer

Linear Sublayer

Buffer Layer

Overlap Region

Sublayer
Viscous

0.1δ+

δ+ 1

Outer Boundary Layer

Figure 7.2: Sketch showing the various regions of the turbulent boundary layer in
inner and outer variables. Note that in δ+ is less than approximately 3000, then
the inertial layer cannot be present, and for δ+ less than about 300, the mesolayers
extend into the outer layer.
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only viscous shear stresses are important, and a buffer layer in which both viscous
and Reynolds shear stresses are important. And as we shall see later, some (me
among them) believe that the lower part of the inertial sublayer (30 < y+ < 300
approximately) is really a mesolayer in which the Reynolds shear stress is constant
at u2

∗, but the energetics of the turbulence (the multi-point equations) are still
influenced by viscosity. Or said another way, the mean flow equations are indeed
inviscid, but the multi-point equations for the turbulence are not. This close to the
wall there simply is not the scale separation between the energy and dissipative
scales required for viscosity to not directly affect the Reynolds stress producing
motions.

7.6 Pressure gradient boundary layers and chan-

nel flow

We will consider the near wall regions of pressure gradient boundary layers and
channel flows together, in part because many have been led to believe that the
near wall regions of both are identical; and even that they are identical to the near
wall region of the zero pressure gradient turbulent boundary layer we considered
above. From an engineering perspective, the problem would be greatly simplified
if this were true. You can decide for yourself whether this is reasonable or not.3

The averaged equations for a turbulent boundary layer (including pressure
gradient) look like this:

U
∂U

∂x
+ V

∂U

∂y
= −1

ρ

dP∞

dx
+

∂

∂y

[
−〈uv〉+ ν

∂U

∂y

]
(7.35)

where the y-momentum equation for the boundary layer has been integrated to
replace the local pressure by that imposed from outside the boundary layer, P∞,
which is in turn assumed to be a function of the streamwise coordinate, x, only.

By contrast fully developed turbulent channel flows are homogeneous in the
streamwise direction (only the pressure varies with x), so the convection terms
(left hand side) are identically zero and the mean momentum equation reduces
to:

0 = −1

ρ

dP

dx
+

d

dy

[
−〈uv〉+ ν

dU

dy

]
(7.36)

The cross-stream momentum equation can be used to argue that P is independent
of y, to at least second order in the turbulence intensity.

Clearly equations 7.35 and 7.36 reduce to equation 7.17 only if the extra terms
in each vanish; i.e., the mean convection terms on the left-hand side of equa-
tion 7.35 and the pressure gradient term in both. This is presumed to happen at

3This chapter was taken from a more extensive discussion of the issues raised in this section
and the next by George, W.K. (2007) ”Is there really a universal log law for turbulent wall-
bounded flows?”, Phil. Trans. Roy. Soc. A, 365, pp. 789 - 806.
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Figure 7.4: Plots of y+dU+/dy+ for
DNS of channel flow, R+ = 180, 550,
950, and 2000.

‘sufficiently’ high Reynolds number. But there is a problem which is seldom (if
ever) addressed. It is obvious if equation 7.36 is integrated to obtain:

u2
∗ =

[
−〈uv〉+ ν

∂U

∂y

]
− y

ρ

dP∞

dx
, (7.37)

or in so-called ‘inner variables, y+ = yu∗/ν and U+ = U/u∗:

1 = −〈uv〉+dU
+

dy+
− λ+y+ (7.38)

where λ+ is a dimensionless pressure gradient defined as:

λ+ =
ν

ρu3
∗

dP∞

dx
(7.39)

For a channel flow, the force exerted on the overall flow due to the streamwise
pressure gradient is exactly balanced by the wall shear stress, so that:

τw
ρ

= u2
∗ = −R

ρ

dP

dx
(7.40)

where R is the half-height of the channel. Therefore for a channel, λ+ = 1/R+,
where R+ = u∗R/ν. Thus equation 7.38 becomes simply:

1 = −〈uv〉+dU
+

dy+
+

y+

R+
(7.41)

Since the viscous stress term is less than about 1% by y+ = 30, this means that
Reynolds shear stress drops linearly by 10% over the region of interest (y/R ≤ 0.1),
independent of the Reynolds number. Therefore only in the innermost part of the
constant stress layer can the pressure gradient be assumed negligible, and nowhere
if the Reynolds number is not extremely high.
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The interplay of the Reynolds shear stress and the mean pressure gradient is
illustrated in figure 7.3 using the recent DNS channel flow data from Jimenez and
his co-workers (e.g., del Alamo et al. 2006). The values of R+ are 180, 500, 950
and 2000. The linear drop of the total shear stress (viscous plus Reynolds) insures
that there is no constant stress region, since its contribution is more than 1% of
the total beyond y+ = 2, 5, 10 and 20 respectively. And, contrary to popular
belief, the situation will not improve with Reynolds number, since by y+ = 0.1R+

– 0.2R+ (the approximate outer limit of the inertial layer) the pressure gradient
will always have reduced the Reynolds shear stress by 10 % - 20 %.

Many assume (mostly because they have been told) that the inertial region is
described by a logarithmic profile, and that is built into many turbulence models.
Figure 7.4 uses the same DNS data to illustrate that there is certainly not a
logarithmic region for these data. If the velocity profile were really logarithmic,
the quantity plotted, y+dU+/dy+ would be constant over some region. Clearly it
is not, at least for Reynolds number range of DNS data currently available.

By contrast, the boundary layer at zero pressure gradient does not have this
pressure gradient problem, since the pressure gradient term is identically zero. If
the Reynolds number is high enough for the convection (advection) and viscous
terms to be negligible over some region (e.g., δ+ >> 300), it truly does have
a y-independent stress layer (even though it continues to vary slowly with x).
Therefore it can (at least in principle) behave like the equation 7.17, even if pipe
or channel flow cannot. Boundary layers with pressure gradient, however, do not
behave like either a zero pressure gradient boundary layer or a channel (or pipe)
flow, since over the range logarithmic behavior is expected the role of the pressure
gradient depends on the value of λ+. Therefore the effect of the pressure gradient
over the overlap region will in principle be different for each imposed λ+ (with
presumably different log parameters for each).

Thus there is no reason a priori to believe boundary layers and pipes/channels
to have identical inertial layers (or even mesolayers). The most that can be ex-
pected is that they might be identical only for the part of the flow which satisfies
y+ << 0.1R+ or y+ << 0.1/λ+ (and even then only if the residual x-dependence
of the boundary layer is ignored). For most boundary layer experiments, this is
a very small region indeed. Therefore, while pipe/channel experiments (or DNS)
may be of considerable interest in their own right, they can not be a substitute for
high Reynolds number boundary layer experiments. This is especially true if the
goal is to evaluate or substantiate theories to within 10% (since their underlying
equations differ over the overlap region by this amount).
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7.7 The inertial sublayer

7.7.1 Some history

The realization that the Reynolds stress might be nearly constant over some region
of the flow led von Kármán (1930) and Prandtl (1932) to postulate that the
velocity profile might be logarithmic there. The easiest derivation begins with
using an eddy viscosity argument. Simply model the Reynolds shear stress with
an eddy viscosity, say −〈uv〉 = νe∂U/∂y ≈ u2

∗ (since the viscous term is negligible
in the inertial region). Then on dimensional grounds choose νe = κu∗y, where κ
is a constant of proportionality. Integration yields immediately:

u+ =
1

κ
ln y+ +B (7.42)

where κ and B are assumed constant
This was originally believed to apply outside of y+ = 30 out to about y/δ99 ≈

0.1 – 0.2 or y/R ≈ 0.2 for a channel or pipe flow. The results looked pretty good,
especially given the data at the time. So not only was the idea of the ‘log law’
born, it came (on the basis of quite limited evidence) to be considered ‘universal’.
The subsequent refinements by Millikan (1938), Isakson (1937), Clauser (1954)
and Coles (1956) were so strongly embraced by the community that they not
only appear in virtually all texts, it is only in the past decade or so that serious
challenges to the arguments are even publishable.

At this time (and over the past decade or so), the ‘log’ sublayer has been (and
is) one of the most discussed and debated subjects in Fluid Mechanics. There
is one whole school of thought that says the mean profile is logarithmic — quite
independent of whether the external flow is a boundary layer, a pipe, a channel,
or for that matter about anything you can think of. Moreover, it is usually argued
that the three paramenters in this universal log profile are themselves universal
constants.

This whole idea of a universal log law has pretty much been elevated to the
level of the religion — and why not? Life becomes a lot simpler if some things can
be taken as known to be true. And even the word, universality has a nice ring to
it. For example, some go so far as to say that we can be so sure of these things that
we don’t even need to bother measure down below the “log” layer, since we already
know the answer — we need only find the ‘shear stress’ which fits the universal log
profile onto our data, and that’s the shear stress. And if the measurements down
in the linear region don’t collapse when plotted as U+ = U/u∗ versus y

+ = yu∗/ν
and the inferred value of u∗, why then clearly the measurements of U or y must
be wrong down there. The possibility that the log law might be wrong, or even
that the parameters might not be constant is just too painful to contemplate. So
no matter how much evidence piles up to the contrary, the universalists persist in
their “beliefs” – a lot like the people who still believe that the earth is flat4. It
just makes the earth so much easier to draw.

4There really are people who still believe the earth is flat, and they even have ‘explanations’



136 CHAPTER 7. WALL-BOUNDED TURBULENT FLOWS

Now you probably suspect from the tone of the above that I am not a member
of the universalist school. And you are certainly right — and I don’t believe the
earth is flat either. But I am not one of the ‘other’ group either — the so-called
power-law school who believe that the mean velocity profile in this region is given
by a power law. The ‘power law people’ are at somewhat of a disadvantage since
their parameters are Reynolds number dependent. The fact that their power laws
may fit the data better is scoffed at, of course, by the universalists who naturally
believe any data for which their universal log law does not fit perfectly must be
wrong, or certainly in need of careful manipulation.

So where to these ideas come from? And why do people hold them so zealously?
Well, the first is easy and we shall see below. The answer to the second question
is probably the same as for every religious quarrel that has ever been — the less
indisputable evidence there is for an idea, the more people argue that there is.

7.7.2 Channel and Pipe Flows

So back to question one. Here in a nutshell is the answer: Let’s consider two
simple changes to the closure solution presented above; i.e.,

u2
∗ = νt

∂U

∂y
(7.43)

Consider the following:

• We are in a flow region where the viscous stress is negligible.

• The only parameters we have to work with are the distance from the wall,
y, and the friction velocity, u∗.

It follows immediately on dimensional grounds alone that:

νt = Cu∗[y + a] (7.44)

where the coefficient C must be exactly constant in the limit of infinite Reynolds
number as must the additive “offset” a. Note that an offset is necessary since we
really don’t have any idea how big an eddy is relative to the wall, nor what the
effect of the viscous sublayer beneath us is.

For the flows homogeneous in x, we can take C(Re) and a = a(Re) to be
Reynolds number dependent, but independent of y. This implies we can integrate
equation 7.43 using equation 7.44 to obtain:
homogeneous flows

u+ = Ci(Re) ln[y+ + a(RE)+] +Bi(Re) (7.45)

for all our observations that suggest it is not. Turbulence ‘experts’ are capable of these kinds of
arguments too.
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where B(Re) is the integration constant. Since in the limit of infinite Reynolds
number, our original momentum equation was independent of Reynolds number,
then so must our solution be in the same limit; i.e.

Bi(Re) → Bi∞ (7.46)

Ci(Re) → Ci∞ (7.47)

a(Re)+ → a+∞ (7.48)

This is, of course, the usual log law – but with an offset. And Ci∞ = 1/κ is the
inverse of the usual von Karman “constant”. A much more formal derivation is
included in the appendix to this chapter, which avoids both the problems raised
earlier about the pressure gradient and the need to assume a particular turbulence
model.

There really aren’t many high Reynolds number channel simulations, but the
same considerations can be applied to turbulent pipe flows. And there are some
really impressively high Reynolds number pipe flow experiments that were con-
ducted by Beverly McKeon, Lex Smits and their co-workers using the superpipe
facility at Princeton. As can clearly be seen in Figures 7.5 and 7.6, the superpipe
data really does show the expected logarithmic region, and it’s extent increases
with increasing Reynolds number. It can also be argued theoretically for channel
and pipe flows that there should also be a logarithmic friction law. Figure 7.7
shows that this seems to be true also.

7.7.3 Boundary Layers

The evidence above for the logarithmic profile and friction laws would seem to
be rather convincing, at least for a pipe or channel. So what’s the problem?
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The first problem we have to confront is what do we mean by infinite Reynolds
number — which is of course the only limit in which our inner equations are valid
anyway? For a parallel flow like a pipe or channel where all the x-derivatives
of mean quantities are zero (i.e., homogeneous in x), this is no problem, since
at least the local Reynolds number would not change with downstream distance.
But for a developing flow like a boundary layer or wall jet it is a BIG problem
since the further you go, the bigger the local Reynolds number gets, so you never
stop evolving.

So we need to ask ourselves: how might things be different in a developing
boundary layer. Many want to assume that nothing is different. But then the
whole idea of a boundary layer is that it spreads, so it is the departures from a
parallel flow that make it a boundary layer in the first place. The most obvious
way (maybe the only way) to account for the variation of the local Reynolds
number as the flow develops is to include a factor y+

α
in our eddy viscosity; i.e.,

νt = C(Re)[y+]α u∗y (7.49)

where α can depend on the local Reynolds number.
Since we know the flow very near the wall is almost parallel, it is obvious that

α is going to be have to be quite small. But it is easy to show that no matter
how small α is, unless it is identically zero our equation will never integrate to a
logarithm. In fact, we obtain:

u+ = Ci(Re)[y+ + a+]
α
+Bi(Re) (7.50)

where as before all the parameters must be asymptotically constant. As you can
see this is a power law. It can become a log law only if α is asymptotically zero,
which of course would mean that the boundary layer has stopped growing. This
seems unlikely, at least to me.
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On the other hand, suppose the flow is exactly parallel, like a channel or a
pipe. Then our α would be exactly zero, and we get a logarithmic profile. This is
to me one of the great and beautiful mysteries of calculus: how a tiny infinitesimal
can change a logarithm to a power law.

In fact, other arguments based on functional analysis and quite independent of
closure models can produce the same results, and show that the additive parameter
for the power law is identically zero. Moreover, it is possible using a powerful
new method called Near-asymptotics to actually deduce the Reynolds number
dependence of most of the parameters in both the log and the power laws. This
is an area still undergoing development at the moment. My advice is: reject any
simple argument which dismisses these new developments. They may not be as
simple as the old log law, but they might have the advantage of being correct.

Boundary layer developments over the past decade have been discussed in
detail in a recent paper (George 2006 AIAA Journal) from the perspective of the
ideas presented here, so the very brief summary below will not suffice for a careful
reading of that paper. The primary concerns are twofold: first the apparent lack
of a consistent theory for the log law in boundary layers; and second, the validity
of the experiments. Both these are discussed below.

First, there is good reason to believe that the underlying log theory utilized
above so convincingly for pipe/channel flow does not apply to boundary layers.
The theory for pipe and channel flows depends crucially on the existence of the
Reynolds number independent limits of the scaled profiles. If the inner and outer
profiles do not both scale with u∗, then there is no possibility of a logarithmic
profile in the overlap region. Because the boundary layer is not homogeneous in
the streamwise direction, there is no theoretical argument that can be used to
justify an outer deficit law for boundary layers using u∗ (as described in detail in
George 2006 and George and Castillo 1997). Thus in the absence of supporting
theory, any further inferences based on this deficit scaling are at most built on a
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foundation of empiricism, no matter how good the empirical collapse over some
range of the data.

In spite of the theoretical objections, there is still evidence that a log friction
law with κ = 0.38 is an accurate description of at least the friction law for the
boundary layer (e.g., Österlund 2000, Nagib et al. 2004), and perhaps even the
velocity profiles. In an effort to resolve the apparent paradox, George (2006)
suggested these might represent the leading terms in a logarithmic expansion of
the power law solutions, and showed that a value near 0.38 was consistent with the
power law coefficients. In fact, the dependence of the skin friction (or equivalently,
u∗/U∞) on Reynolds number (or δ+) that results from a power law theory (which
is theoretically defensible from first principles, George and Castillo 1997), are
virtually indistinguishable from the log law fits to the same power law theoretical
curves.

Whatever the reason for the apparent success of the log law in zero pressure
gradient boundary layers, in the absence of a consistent log theory for the bound-
ary layer (or any developing wall-bounded flow), there is no reason to believe
that logarithmic friction and velocity laws for boundary layers should be linked
to those for pipes and channels, no matter how good the empirical curve fits. The
consequences of this are quite important, since it means that boundary layers
could be quite well described by logarithms with κ = 0.38, independent of all
other considerations.

Second, there are reasons to believe there are significant problems with at least
some of the boundary layer mean velocity measurements that have been used to
argue for the log law with κ = 0.38. George (2006) pointed out that the recent
results from Nagib et al. (2004) are not consistent with the momentum integral,
differing by as much as 30-40%.5 Thus either the flow is not a two-dimensional
incompressible smooth wall turbulent boundary layer, or the skin friction and/or
velocity measurements are in error.

George (2006) also considered in detail the other extensive and relatively re-
cent set of mean velocity measurements by Österlund 2000. Contrary to the
claims made by Österlund et al. (2000), these data were shown to be equally
consistent with either log or power law curve fits, and in fact the curve fits were
indistinguishable. It was also pointed out that in the absence of Reynolds stress
measurements, there was no way to confirm that any of the measured profiles were
consistent with the mean equations of motion. This was of considerable concern,
since unlike earlier boundary data (e.g., Smith & Walker (1959)), the Österlund
data showed virtually no Reynolds number dependence in the overlap region, but
did in the outer region of the flow (where one would least expect to find it).

The afore-mentioned concern about the Österlund experiment was consider-
ably heightened by recent results from on-going experiments at the Lille bound-
ary layer facility (mentioned above) by Stanislas and co-workers (see Carlier and

5This problem seems to have disappeared in more recently reported versions of this data, but
with no explanation offered. The data have still not been made available to the general public
as of this writing.
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Figure 7.10: Comparison of mean velocity
profiles from Österlund (2000) at Rθ = 20, 562
and Stanislas et al. (2006) at Rθ = 21, 000.
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Figure 7.11: Expanded linear-linear plot
of data in figure ?? from 100 < y+ <
1, 100.

Stanislas et al. 2004), Stanislas et al. 2006), which became available to me
in the course of preparing this paper. Their mean velocity profile obtained at
Rθ = 21, 000 is plotted in Figure 7.10 along with the corresponding profile from
Österlund (2000). The friction coefficients for the two experiments were almost
exactly the same (meaning the normalized shear stresses were in agreement), as
is evident from the near overlay of the curves at the largest distances from the
wall (effectively U∞/u∗). This is encouraging, since the Österlund shear stress was
estimated using an oil film method, and the Lille result obtained by micro-PIV.
Incidentally, the latter value differs by about 3.5% from the shear stress estimated
using the Clauser chart on the Lille data, a substantial difference in view of the
questions being asked.

By contrast to the data at large distances from the wall, the mean velocity pro-
files near the wall (inside 0.15δ99 or y

+ < 1200) differ substantially until they come
together again inside y+ = 10. Figure 7.11 shows a linear-linear plot of both sets
of data showing only the region from 100 < y+ < 1, 100. The two profiles appear
virtually identical over this range, but shifted in both velocity and position. This
is difficult to understand. Both sets of measurements were obtained using hot-wire
anemometry, so there is no obvious reason for the difference. The Lille profiles,
however, were confirmed by more sparsely spaced PIV measurements. Moreover
the Lille profiles are consistent with the measured Reynolds stress profiles (from
PIV) and the differential equations of motion.

Both the log profile and power law profile, U+ = Ci(y
+ + a+)γ, can be opti-

mized to fit the Lille velocity profiles to within 0.2% for 50 < y+ < 0.1δ+. This
was no surprise, since as pointed out by George (2006), the functional forms are
indistinguishable, at least over the range of data available. The results for γ, Co,
Ci and a+ were 0.119, 0.97, 9.87 and -8.3 respectively, different from the earlier
estimates of George and Castillo (1997) as expected since the data were different
than that previously considered. The values for the logarithmic fit, on the other
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hand, were quite surprising given the difference in the measured profiles, since the
optimal values were 0.384, 4.86, -2.03, and 4 for κ, Bi, Bo and a+ respectively. By
comparison, the log values for the Österlund profile were κ = 0.384, Bi = 4.16,
and a+ = 0.

In other words, the values of κ from the log curve fits to the Stanislas et
al. and Österlund experiments were identical, even though the profiles and other
constants differed substantially. Thus in spite of the differences and shortcomings
of the various experiments (which remain to be explained and reconciled), there
would appear to be increasing evidence for κ = 0.38 (or even 0.384) for boundary
layers.

7.7.4 Summary and conclusions

So in summary, there is no justification, theoretical or experimental, for a univer-
sal log law for all wall-bounded flows, no matter how aesthetically appealing or
potentially useful an idea. At very least, boundary layers and pipe/channel flows
are fundamentally different. Or viewed another way, the ‘log law’ represents the
inertial region of pipes, channels and boundary layers to about the same degree
that their underlying equations have the same terms, which is to within about
10%. Thus the historical value of κ = 0.41 is probably best seen as a compromise
for different flows, accurate to within these limits.

The log theory does apply quite rigorously to pipe flows with κ = 0.43, and
perhaps to other wall-bounded flows homogeneous in horizontal planes (e.g., chan-
nels, Couette flow, the neutral planetary boundary layer, etc.). But it is a power
law theory for the boundary layer that can be derived from first principles using
equilibrium similarity analysis and near-asymptotics. This theory predicts (with-
out additional assumptions) a number of things that have also been observed, but
which require additional hypotheses with a log theory. Among them are: differing
outer scales for the normal and shear stress components (U2

o and u2
∗ respectively),

the consequent dependence of the turbulence properties of boundary layers in the
overlap region on mixed scales, and the dependence of pressure fluctuations on
the ratio Uo/u∗. Moreover, the same principles can be used to predict different re-
sults for different flows (like wall-jets and boundary layers with pressure gradient),
again as observed.

Nonetheless, theoretical arguments notwithstanding, the log ‘law’ also appears
to apply to developing boundary layers. If not the leading term in a logarithmic
expansion of the power law solution, it is at least a local and empirical description
And to the degree that developing boundary layers can be described this way, the
value of κ for them appears (at least at this time) to be about 0.38.



7.7. THE INERTIAL SUBLAYER 143

Appendix: Formal derivation of log profiles for

pipe flow

The derivation of the log law for pipe and channel flows can be carried out much
more rigorously than presented above, and quite independent of any eddy vis-
cosity model. This derivation also avoids any problems one might infer from the
arguments above (and the DNS data) about the importance of the pressure gra-
dient. The problem is that for pipe and channel flows is that there is really no
constant Reynolds stress region nor any region where the pressure gradient can
be ignored. We owe to Isakson (1937) and Millikan (1938) the original arguments
that the contrary is true. The basic arguments have been presented in detail in
many texts (e.g., Tennekes and Lumley 1972, Panton 1996 and in slightly more
general form in Wosnik et al. 2000), and will only be summarized here. We will
present them for pipe flow only, since experiments in pipes are much easier to
realize at high Reynolds numbers than in channels, in part due to the difficulty
of maintaining a two-dimensional mean flow in the latter. The superpipe data of
Zagorola and Smits (1998), for example, go as high as R+ = 500, 000. The basic
theoretical arguments for channels, however, are the same.

The counterpart to equation 7.36 for fully-developed flow in an axisymmetric
pipe with smooth walls is:

0 = −1

ρ

∂P

∂x
+

1

r

∂

∂r
r

[
−〈uv〉+ ν

∂U

∂r

]
(7.51)

where r is measured from the pipe centerline, and U, u and v are to be interpreted
as corresponding to the streamwise and radial velocity components respectively.
Since P is nearly independent of r, we can multiply by r and integrate from the
wall, R, to the running coordinate, r, to obtain the counterpart to equation 7.37
as:

u2
∗ =

(
r

R

) [
−〈uv〉+ ν

∂U

∂r

]
− 1

2

(R2 − r2)

R

1

ρ

dP

dx
(7.52)

Integration all the way to the centerline (r = 0) yields the relation between the
pipe radius, the wall shear stress and the imposed pressure gradient as:

u2
∗ = −R

2ρ

dP

dx
(7.53)

Thus of the four parameters in the equation, R, ν, (1/ρ)dP/dx and u2
∗, only three

are independent. It follows immediately from dimensional analysis that the mean
velocity for the entire flow can be written in either of two ways:

U

u∗
= fi(r

+, R+) (7.54)



144 CHAPTER 7. WALL-BOUNDED TURBULENT FLOWS

and
U − Uc

u∗
= fo(r, R

+) (7.55)

where Uc is the mean velocity at the centerline, R+ = u∗R/ν is the ratio of outer
to inner (or viscous) length scales, r+ = ru∗/ν is an ‘inner’ normalization of r,
and r = r/R is an ‘outer’ normalization of r. Note that the velocity difference
from the centerline, or ‘velocity deficit’, is used in the last expression to avoid
having to take account of viscous effects as R+ → ∞.

Figures 7.5 and 7.6 show some of the recent superpipe data of McKeon et
al. (2004b) plotted in ‘inner’ and ‘outer’ variables respectively. (Note that the
conventional labels ‘inner’ and ‘outer’ may appear opposite to the what they
should be, since the ‘outer’ is really the core region for the pipe and ‘inner’ is a
thin region closest to the pipe walls.) Clearly the inner scaled profiles appear to
collapse near the wall, nearly collapse over a large intermediate range, and diverge
when (R − r)/R > 0.1 or so. This means that the extent of the region of near-
collapse in inner variables increases indefinitely as the Reynolds number, R+,
increases. One might easily infer that in this region of near-collapse, the collapse
will also improve to some asymptotic limiting profile (in inner variables). Similarly
the outer scaled profiles appear to nearly collapse as long as R+− r+ > 300− 500
approximately, and again one could infer that the region of collapse might improve
and continue all the way to the wall if the Reynolds number increased without
bound.

We can define hypothetical ‘inner’ and ‘outer’ limiting profiles as fi∞(r+) and
fo∞(r) respectively; i.e.,

limR+→∞fi(r
+, R+) = fi∞(r+) (7.56)

limR+→∞fo(r, R
+) = fo∞(r) (7.57)

For finite values of R+, both equations 7.56 and 7.57 describe functionally the
entire profile, and R+ acts as a parameter to distinguish the curves when they
diverge. To see how they differ, consider the limit as R+ → ∞. Clearly viscosity
has disappeared entirely from fo∞(r), so it can at most represent the mean velocity
profile away from the near wall region where viscous effects are not important. By
contrast, fi∞(r+) can only describe the very near wall region, since it has retained
no information about R.

Now it is possible that the two limiting profiles, fi∞ and fo∞, don’t link up;
i.e., neither describes the flow far enough toward the pipe center in the first case
and toward the wall in the latter that they both describe a common region. But
suppose they do (Millikan’s great idea), so that both the inner and outer scalings
have a common (or overlap) region. Or thought of another way: can we ‘stretch’
the region over which the inner region collapses the data so that it overlaps a
similar ‘stretch’ in the other direction of the outer scaled version?

In fact there are a variety of ways to show that the answer is yes. The tra-
ditional way is to set the inner limit of fo equal to the outer limit of fi and ask
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whether there can be a solution in the limit of infinite Reynolds number. Sim-
ilar results can be obtained by matching derivatives in the limit (c.f., Tennekes
and Lumley 1972), or using matched asymptotic expansions (e.g., Panton 1996).
Alternatively, Wosnik et al. (2000) used the methodology of near asymptotics to
seek not an overlap region, but instead a common region which survives at finite
Reynolds number as the limits are approached. Regardless, all of the method-
ologies conclude that the mean velocity profile in the common (or overlap) region
should be logarithmic and given by the following equations:

U − Uc

u∗
=

1

κ
ln (1− r + a) +Bo (7.58)

U

u∗
=

1

κ
ln (R+ − r+ + a+) +Bi (7.59)

where a = a/R, a+ = au∗/ν and a is a spatial offset which is a necessary con-
sequence of the need for invariance (c.f., Oberlack 2001, Wosnik et al. 2000).
In addition, the friction velocity and centerline velocity must be related by the
following relationship (or friction law):

Uc

u∗
=

1

κ
ln R+ + C (7.60)

where

C = Bi −Bo (7.61)

Thus it is not enough to simply draw a logarithmic curve on a friction plot or
an inner velocity plot and conclude anything more than that an empirical fit is
possible. In fact empirical log fits always always seem to work, at least over some
limited range, for just about any curve. Therefore it is only when fits to all the
three plots (friction, inner and outer mean velocity) can be linked together with
common parameters using equations 7.58 to 7.61 that it can truly be concluded
that pipe/channel flows are logarithmic and that theory and experiment agree.

The asymptotic theories conclude that κ, Bi, and Bo must be constant, but
only because the matching is done in the limit as R+ → ∞. Near-asymptotics,
by contrast tells how these limits are approached (inversely with powers of lnR+)
and also how the different parameters are linked together; i.e., they must either
be independent of R+ or satisfy:

lnR+ d

d lnR+
(1/κ) =

d

d lnR+
(Bi −Bo) (7.62)

But regardless of whether κ, Bi or Bo are constants (i.e., independent of Reynolds
number) or only asymptotically constant, only two of them can be chosen inde-
pendently.

So how well does this work? Quite well actually. Figure 7.7 shows data for
Uc/u∗ from the superpipe experiments of McKeon et al. (2004a), along with
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several logarithmic fits to the data, both with average rms errors of about 0.2%.
One curve uses constant values of κ and C, and another the variable Reynolds
number version proposed by Wosnik et al. 2000. The values of κ and C = Bi−Bo

were 0.427 and 7.19 for the constant parameter (Reynolds number independent)
analysis, while the limiting values for κ∞ and C∞ = Bi∞ −Bo∞ for the Reynolds
number dependent analysis were 0.429 and 7.96 respectively. The reason for the
difference between the two values of C can be seen by examining the Reynolds
number dependence in the Wosnik et al. theory for which:

Ci = Ci∞ +
(1 + α)A

(lnR+)α
(7.63)

1

κ
=

1

κ∞
− αA

(lnR+)1+α
(7.64)

Substituting these into equation 7.60 yields the refined friction law as:

Uc

u∗
=

1

κ∞
ln R+ + C∞ +

A

(lnR+)α
, (7.65)

All of the extra Reynolds number dependence is in the last term of equation 7.65,
and in fact it is this term which ‘adjusts’ C from its asymptotic value of 7.96 to
7.19 over the range of the experiments. For this data set the optimal values of α
and A were given by -0.932 and 0.145 respectively, so the variation in κ over the
entire range of the data was only from 0.426 to 0.427. The corresponding variation
of the last term in the friction law, however, was from −0.690 to −0.635, enough
to account for the slight lack of collapse of the mean velocity profiles in outer
variables noted in figure 7.6.

Note that the constants determined by the Wosnik et al. 2000 used an earlier
(and ‘uncorrected’) form of the superpipe data, which showed a slightly different
Reynolds number dependence. The differences are due to the static hole correc-
tions in the new data set. Unlike the conclusions from earlier versions of the
superpipe data, there would appear to be little reason to consider the Reynolds
number dependent version superior.

Table 7.1 summarizes the parameters from individual fits to five of the McKeon
et al. (2004a) profiles selected to cover the entire range of the data. The value
of κ determined from the friction data was taken as given, and the values of
Bi and a were determined from a regression fit of each inner profile between
50 < (R − r)+ < 0.1R+. The average rms errors are approximately 0.2% for all
inner profiles. These same values, together with C = Bi − Bo, were then used to
determine Bo, by optimizing the fit to the same profile in outer variables over the
same range. The values of κ are remarkably constant, as are those of Bi. There
might be a slight Reynolds number trend in the values of Bo. In view of the closest
distance to the wall which can be measured (relative to a+), the variation in a+

is probably random positioning errors.
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ReD × 10−5 0.743 1.44 4.11 13.5 44.6
R+ × 10−3 1.82 3.32 8.51 25.2 76.4

κ 0.426 0.426 0.427 0.427 0.427
Bi 5.62 5.50 5.64 5.87 5.85
Bo -1.65 1.77 -1.65 -1.43 -1.46
a+ -1.33 -1.34 -5.10 -11.9 -1.5

% errin 0.169 0.269 0.427 3.26e-04 0.188
% errout 0.657 1.13 1.71 1.37 1.55

Table 7.1: Parameters for fits of log law to inner and outer profiles of McKeon et
al. (2004a) using friction law values for Reynolds number dependent parameters.

If the Reynolds number dependence is truly negligible, then the inner and
outer mean velocity profiles should collapse when different Reynolds numbers are
plotted together as in Figures 7.5 and 7.6. The collapse of the profiles in inner
variables is excellent, consistent with the observations that κ is nearly constant,
and Bi and a+ are nearly so. The outer variable plot does not collapse quite so
well, especially over the range for which the profiles are logarithmic. This lends
support for the variable Reynolds number approach, which shows that the only
significantly Reynolds number dependent parameter is Bo. This has implications
for the asymptotic friction law, however, since the asymptotic values of C =
Bi −Bo are different, 7.19 versus 7.96.

So where does this leave us? These experiments (and most other pipe experi-
ments as well) show an almost perfect agreement with the theoretical predictions,
both the asymptotic and near-asymptotic versions. Not only does there appear
to be a region of logarithmic behavior in the mean velocity profiles where we
expected to find it (30 − 50 < y+ < 0.1 − 0.2R+), the parameters determined
from fits to these and the logarithmic friction law satisfy the constraints among
them. This is about the strongest experimental confirmation for a theory that
can possibly be imagined.

So the analysis presented here (of part of the most recent version of the su-
perpipe experiments) suggests strongly that the value of κ is about 0.43, a bit
lower than the value of 0.44-0.45 suggested from the earlier uncorrected data and
slightly higher than the estimate of McKeon et al. (2004a) of 0.42 using a larger
set of the same data used herein. But all are higher than the earlier accepted
value of 0.41, however, and most certainly not lower. The asymptotic value of
the additive constant for the outer velocity profile (and friction law) can still be
debated, but this debate in no way detracts from the overall conclusion. In spite
of the absence of a constant total stress region (and hence the lack of validity of
the early arguments for it), the logarithmic theory for a pipe flow can be taken
as fact. One can infer this is probably also true for the channel, once data at
sufficiently high Reynolds number becomes available to test it.

Part II: Two Point Equations of Turbulence
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Chapter 8

Stationarity Random Processes

This chapter on stationary random processes does not really fit here if we were
following the logical order of presentation of the material, since it has absolutely
nothing to do with the chapters which immediately follow it. And it is a actually a
bit dangerous to put it here, since it leads many people to the conclusion that the
Reynolds-averaged equations of the next few chapters are valid only for stationary
random processes. This is absolutely false. The RANS equations are
completely general, whether the under-lying statistical processes are
stationary or not, since they have been averaged in the sense of the
true (or ensemble) average of the preceding chapter. Nonetheless there
is an advantage pedagogically to putting this chapter here since many students
at this point are trying to figure out how the results the preceding chapter apply
to the time-varying (and often statistically) stationary processes they are seeing
in the lab, or have seen in their experience. It is not hard to think of the finite
time estimator for the time average, say UT , as being related to the the finite
sample estimator,XN , of the preceding chapter, especially if the process is sampled
digitally. It is not at all obvious, however, ‘What constitutes an independent
realization is the process is time-varying?’ This chapter both introduces the idea of
a stationary random process, and answers this question. Much more detail about
this important class of random process is included in the appendices, including a
complete discussion of spectral analysis.

8.1 Processes statistically stationary in time

Many random processes have the characteristic that their statistical properties do
not appear to depend directly on time, even though the random variables them-
selves are time-dependent. For example, consider the signals shown in Figures 2.2
and 2.5.

When the statistical properties of a random process are independent of time,
the random process is said to be stationary. For such a process all the moments
are time-independent, e.g., 〈ũ(t)〉 = U , etc. Note that we have used a tilde

149
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to represent the instantaneous value (i.e., ũ(t)), a capital letter to represent its
average (i.e., U = 〈ũ(t)), and we define the fluctuation by a lower case letter (i.e.,
u = ũ(t)−U). Also since the process is assumed stationary, the mean velocity and
velocity moments are time-independent. In fact, the probability density itself is
time-independent, as should be obvious from the fact that the moments are time
independent.

An alternative way of looking at stationarity is to note that the statistics
of the process are independent of the origin in time. It is obvious from the
above, for example, that if the statistics of a process are time independent, then
〈un(t)〉 = 〈un(t+ T )〉, etc., where T is some arbitrary translation of the origin in
time. Less obvious, but equally true, is that the product 〈u(t)u(t′)〉 depends only
on the time difference t′ − t and not on t (or t′) directly. This consequence of
stationarity can be extended to any product moment. For example, 〈u(t)v(t′)〉
can depend only on the time difference t′ − t. And 〈u(t)v(t′)w(t′′)〉 can depend
only on the two time differences t′ − t and t′′ − t (or t′′ − t′) and not t, t′ or t′′

directly.

8.2 The autocorrelation

One of the most useful statistical moments in the study of stationary random pro-
cesses (and turbulence, in particular) is the autocorrelation defined as the aver-
age of the product of the random variable evaluated at two times, i.e. 〈u(t)u(t′)〉.
Since the process is assumed stationary, this product can depend only on the time
difference τ = t′ − t. Therefore the autocorrelation can be written as:

C(τ) ≡ 〈u(t)u(t+ τ)〉 (8.1)

The importance of the autocorrelation lies in the fact that it indicates the
“memory” of the process; that is, the time over which a process is correlated with
itself. Contrast the two autocorrelations shown in Figure 8.1. The autocorrelation
of a deterministic sine wave is simply a cosine as can be easily proven. Note that
there is no time beyond which it can be guaranteed to be arbitrarily small since
it always “remembers” when it began, and thus always remains correlated with
itself. By contrast, a stationary random process like the one illustrated in the
figure will eventually lose all correlation and go to zero. In other words it has a
“finite memory” and “forgets” how it was. Note that one must be careful to make
sure that a correlation really both goes to zero and stays down before drawing
conclusions, since even the sine wave was zero at some points. Stationary random
processes always have two-time correlation functions which eventually go to zero
and stay there.

Example 1.
Consider the motion of an automobile responding to the movement of the

wheels over a rough surface. In the usual case where the road roughness is ran-
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Figure 8.1: Autocorrelations for two random processes and a periodic one.

domly distributed, the motion of the car will be a weighted history of the road’s
roughness with the most recent bumps having the most influence and with dis-
tant bumps eventually forgotten. On the other hand if the car is traveling down a
railroad track, the periodic crossing of the railroad ties represents a deterministic
input and the motion will remain correlated with itself indefinitely. This can be
a very bad thing if the tie crossing rate corresponds to a natural resonance of the
suspension system of the vehicle.

Since a random process can never be more than perfectly correlated, it can
never achieve a correlation greater than is value at the origin. Thus

|C(τ)| ≤ C(0) (8.2)

An important consequence of stationarity is that the autocorrelation is sym-
metric in the time difference, τ = t′ − t. To see this simply shift the origin in time
backwards by an amount τ and note that independence of origin implies:

〈u(t)u(t+ τ)〉 = 〈u(t− τ)u(t)〉 = 〈u(t)u(t− τ)〉 (8.3)

Since the right hand side is simply C(−τ), it follows immediately that:

C(τ) = C(−τ) (8.4)
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8.3 The autocorrelation coefficient

It is convenient to define the autocorrelation coefficient as:

ρ(τ) ≡ C(τ)

C(0)
=

〈u(t)u(t+ τ)〉
〈u2〉

(8.5)

where

〈u2〉 = 〈u(t)u(t)〉 = C(0) = var[u] (8.6)

Since the autocorrelation is symmetric, so is its coefficient, i.e.,

ρ(τ) = ρ(−τ) (8.7)

It is also obvious from the fact that the autocorrelation is maximal at the origin
that the autocorrelation coefficient must also be maximal there. In fact from the
definition it follows that

ρ(0) = 1 (8.8)

and
ρ(τ) ≤ 1 (8.9)

for all values of τ .

8.4 The integral scale

One of the most useful measures of the length of time a process is correlated with
itself is the integral scale defined by

Tint ≡
∫ ∞

0
ρ(τ)dτ (8.10)

It is easy to see why this works by looking at Figure 8.2. In effect we have replaced
the area under the correlation coefficient by a rectangle of height unity and width
Tint.

8.5 The temporal Taylor microscale

The autocorrelation can be expanded about the origin in a MacClaurin series; i.e.,

C(τ) = C(0) + τ
dC

dτ

∣∣∣∣∣
τ=0

+
1

2
τ 2

d2C

dτ 2

∣∣∣∣∣
τ=0

+
1

3!
τ 3

d3C

dt

∣∣∣∣∣
τ=0

(8.11)

But we know the autocorrelation is symmetric in τ , hence the odd terms in τ
must be identically zero (i.e., dC/dτ |τ=0 = 0, d3/dτ 3|τ=0, etc.). Therefore the
expansion of the autocorrelation near the origin reduces to:
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Figure 8.2: The autocorrelation coefficient showing relation of the integral scale
to the area under the autocorrelation coefficient curve.

C(τ) = C(0) +
1

2
τ 2

d2C

dτ 2

∣∣∣∣∣
τ=0

+ · · · (8.12)

Similarly, the autocorrelation coefficient near the origin can be expanded as:

ρ(τ) = 1 +
1

2

d2ρ

dτ 2

∣∣∣∣∣
τ=0

τ 2 + · · · (8.13)

where we have used the fact that ρ(0) = 1. If we define ′ = d/dτ we can write
this compactly as:

ρ(τ) = 1 +
1

2
ρ′′(0)τ 2 + · · · (8.14)

Since ρ(τ) has its maximum at the origin, obviously ρ′′(0) must be negative.
We can use the correlation and its second derivative at the origin to define a

special time scale, λτ (called the Taylor microscale 1) by:

λ2
τ ≡ − 2

ρ′′(0)
(8.15)

Using this in equation 8.14 yields the expansion for the correlation coefficient
near the origin as:

ρ(τ) = 1− τ 2

λ2
τ

+ · · · (8.16)

1The Taylor microscale is named after the famous English scientist G.I. Taylor who invented
it in the 1930’s. Among his many other accomplishments he designed the CQR anchor which is
still found on many boats today.
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Figure 8.3: The autocorrelation coefficient for positive time lags together with its
oscullating parabola showing the Taylor microscale.

Thus very near the origin the correlation coefficient (and the autocorrelation as
well) simply rolls off parabolically; i.e.,

ρ(τ) ≈ 1− τ 2

λ2
τ

(8.17)

This parabolic curve is shown in Figure 8.3 as the osculating (or ‘kissing’) parabola
which approaches zero exactly as the autocorrelation coefficient does. The inter-
cept of this osculating parabola with the τ -axis is the Taylor microscale, λτ .

The Taylor microscale is significant for a number of reasons. First, for many
random processes (e.g., Gaussian), the Taylor microscale can be proven to be
the average distance between zero-crossing of a random variable in time. This
is approximately true for turbulence as well. Thus one can quickly estimate the
Taylor microscale by simply observing the zero-crossings using an oscilloscope
trace.

The Taylor microscale also has a special relationship to the mean square time
derivative of the signal, 〈[du/dt]2〉. This is easiest to derive if we consider two
stationary random signals, say u and u′, we obtain by evaluating the same signal
at two different times, say u = u(t) and u′ = u(t′). The first is only a function
of t, and the second is only a function of t′. The derivative of the first signal is
du/dt and the second du′/dt′. Now lets multiply these together and rewrite them
as:

du′

dt′
du

dt
=

d2

dtdt′
u(t)u′(t′) (8.18)

where the right-hand side follows from our assumption that u is not a function of
t′ nor u′ a function of t.
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Now if we average and interchange the operations of differentiation and aver-
aging we obtain:

〈du
′

dt′
du

dt
〉 = d2

dtdt′
〈u u′〉 (8.19)

Here comes the first trick: u u′ is the same as u(t)u(t′), so its average is just
the autocorrelation, C(τ). Thus we are left with:

〈du
′

dt′
du

dt
〉 = d2

dtdt′
C(t′ − t) (8.20)

Now we simply need to use the chain-rule. We have already defined τ = t′− t.
Let’s also define ξ = t′ + t and transform the derivatives involving t and t′ to
derivatives involving τ and ξ. The result is:

d2

dtdt′
=

d2

dξ2
− d2

dτ 2
(8.21)

So equation 8.23 becomes:

〈du
′

dt′
du

dt
〉 = d2

dξ2
C(τ)− d2

dτ 2
C(τ) (8.22)

But since C is a function only of τ , the derivative of it with respect to ξ is
identically zero. Thus we are left with:

〈du
′

dt′
du

dt
〉 = − d2

dτ 2
C(τ) (8.23)

And finally we need the second trick. Let’s evaluate both sides at t = t′ (or
τ = 0 to obtain the mean square derivative as:

〈
(
du

dt

)2

〉 = − d2

dτ 2
C(τ)

∣∣∣∣∣
τ=0

(8.24)

But from our definition of the Taylor microscale and the facts that C(0) = 〈u2〉
and C(τ) = 〈u2〉ρ(τ), this is exactly the same as:

〈
(
du

dt

)2

〉 = 2
〈u2〉
λ2
τ

(8.25)

This amazingly simple result is very important in the study of turbulence, espe-
cially after we extend it to spatial derivatives.

8.6 Time averages of stationary processes

It is common practice in many scientific disciplines to define a time average by
integrating the random variable over a fixed time interval, i.e.,
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Figure 8.4: Integration of random time signal from 0 to T is area under the signal

UT ≡ 1

T

∫ T2

T1

ũ(t)dt (8.26)

For the stationary random processes we are considering here, we can define T1

to be the origin in time and simply write:

UT ≡ 1

T

∫ T

0
ũ(t)dt (8.27)

where T = T2 − T1 is the integration time.
Figure 8.4 shows a portion of a stationary random signal over which such an

integration might be performed. The time integral of ũ(t) over the interval (O, T )
corresponds to the shaded area under the curve. Now since ũ(t) is random and
since it forms the upper boundary of the shaded area, it is clear that our estimator
for the time average over the interval (0, T ), UT , is itself random and will depend
on which particular section of the signal is being integrated. Thus, UT is a lot like
the estimator for the mean based on a finite number of independent realizations,
XN we encountered earlier in Section 2.5.

It will be shown in the analysis presented below that if the signal is stationary,
the time average defined by equation 8.27 is an unbiased estimator of the true
average U . Moreover, the estimator converges to U as the time becomes infinite;
i.e., for stationary random processes

U = lim
T→∞

1

T

∫ T

0
ũ(t)dt (8.28)
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Thus the time and ensemble averages are equivalent in the limit as T → ∞, but
only for a stationary random process.

8.7 Bias and variability of time estimators

It is easy to show that the estimator, UT , is unbiased by taking its ensemble
average; i.e.,

〈UT 〉 = 〈 1
T

∫ T

0
ũ(t)dt〉 = 1

T

∫ T

0
〈ũ(t)〉dt (8.29)

Since the process has been assumed stationary, 〈u(t)〉 is independent of time. It
follows that:

〈UT 〉 =
1

T
〈ũ(t)〉T = U (8.30)

To see whether the estimate improves as T increases, the variability of UT

must be examined, exactly as we did for XN earlier in Section 2.5.2. To do this
we need the variance of UT given by:

var[UT ] = 〈[UT − 〈UT 〉]2〉 = 〈[UT − U ]2〉

=
1

T 2
〈
{∫ T

0
[ũ(t)− U ]dt

}2

〉

=
1

T 2
〈
∫ T

0

∫ T

0
[ũ(t)− U ][ũ(t′)− U ]dtdt′〉 (8.31)

=
1

T 2

∫ T

0

∫ T

0
〈u(t)u(t′)〉dtdt′ (8.32)

But since the process is assumed stationary 〈u(t)u(t′)〉 = C(t′−t) where C(t′−t) =
〈u2〉ρ(t′−t) is the correlation function defined earlier and ρ(t′−t) is the correlation
coefficient. Therefore the integral can be rewritten as:

var[UT ] =
1

T 2

∫ T

0

∫ T

0
C(t′ − t)dtdt′ (8.33)

=
〈u2〉
T 2

∫ T

0

∫ T

0
ρ(t′ − t)dtdt′ (8.34)

Now we need to apply some fancy calculus. If new variables τ = t′ − t and
ξ = t′ + t are defined, the double integral can be transformed to (see Figure 8.5):

var[UT ] =
var[u]

2T 2

[∫ T

0
dτ
∫ 2T−τ

τ
dξρ(τ) +

∫ 0

−T
dτ
∫ 2T+τ

−τ
dξρ(τ)

]
(8.35)

where the factor of 1/2 arises from the Jacobian of the transformation. The
integrals over dξ can be evaluated directly to yield:

var[UT ] =
var[u]

2T 2

{∫ T

0
[ρ(τ)[T − τ ]dτ +

∫ 0

−T
ρ(τ)[T + τ ]dτ

}
(8.36)
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Figure 8.5: Integration domain for transformed variables.

By noting that the autocorrelation is symmetric, the second integral can be
transformed and added to the first to yield at last the result we seek as:

var[UT ] =
var[u]

T

∫ T

−T
ρ(τ)

[
1− |τ |

T

]
dτ (8.37)

Now if our averaging time, T , is chosen so large that |τ |/T 〈< 1 over the range
for which ρ(τ) is non-zero, the integral reduces:

var[UT ] ≈ 2var[u]

T

∫ T

0
ρ(τ)dτ

=
2Tint

T
var[u] (8.38)

where Tint is the integral scale defined by equation 8.10. Thus the variability of
our estimator is given by:

ε2UT
=

2Tint

T

var[u]

U2
(8.39)

Therefore the estimator does, in fact, converge (in mean square) to the correct
result as the averaging time, T increases relative to the integral scale, Tint.

There is a direct relationship between equation 8.39 and equation 2.54 which
gave the mean square variability for the ensemble estimate from a finite number
of statistically independent realizations, XN . Obviously the effective number of
independent realizations for the finite time estimator is:

Neff =
T

2Tint

(8.40)
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Figure 8.6: The integral for two integral scales in time effectively acts as an
independent realization, at least for the time integral of a random signal.

so that the two expressions are equivalent. Thus, in effect, portions of the record
separated by two integral scales behave as though they were statistically indepen-
dent, at least as far as convergence of finite time estimators is concerned.

Thus what is required for convergence is again, many independent pieces of
information. This is illustrated in Figure 8.6. That the length of the record
should be measured in terms of the integral scale should really be no surprise
since it is a measure of the rate at which a process forgets its past.

Example
It is desired to measure the mean velocity in a turbulent flow to within an rms

error of 1% (i.e., ε = 0.01). The expected fluctuation level of the signal is 25% and
the integral scale is estimated as 100 ms. What is the required averaging time?

From equation 8.39

T =
2Tint

ε2
var[u]

U2

= 2× 0.1× (0.25)2/(0.01)2 = 125sec (8.41)

Similar considerations apply to any other finite time estimator and equa-
tion 2.57 can be applied directly as long as equation 8.40 is used for the number
of independent samples.

It is common experimental practice to not actually carry out an analog integra-
tion. Rather the signal is sampled at fixed intervals in time by digital means and
the averages are computed as for an ensemble with a finite number of realizations.
Regardless of the manner in which the signal is processed, only a finite portion of
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a stationary time series can be analyzed and the preceding considerations always
apply.

It is important to note that data sampled more rapidly than once every two
integral scales do not contribute to the convergence of the estimator since they
can not be considered independent. If N is the actual number of samples acquired
and ∆t is the time between samples, then the effective number of independent
realizations is

Neff =

{
N∆t/Tint if ∆t < 2Tint

N if ∆t ≥ 2Tint
(8.42)

It should be clear that if you sample faster than ∆t = 2Tint you are processing
unnecessary data which does not help your statistics converge.

You may wonder why one would ever take data faster than absolutely nec-
essary, since it simply fills up your computer memory with lots of statistically
redundant data. When we talk about measuring spectra you will learn that for
spectral measurements it is necessary to sample much faster to avoid spectral
aliasing. Many wrongly infer that they must sample at these higher rates even
when measuring just moments. Obviously this is not the case if you are not
measuring spectra.



Chapter 9

Homogeneous Random Processes

Acknowledgement: The figures in this chapter were prepared by Abolfazl Shiri.

9.1 Random fields of space and time

To this point only temporally varying random fields have been discussed. For
turbulence however, random fields can be functions of both space and time. For
example, the temperature θ could be a random scalar function of time t and
position ~x, i.e.,

θ = θ(~x, t) (9.1)

The velocity is another example of a random vector function of position and time,
i.e.,

~u = ~u(~x, t) (9.2)

or in tensor notation,
ui = ui(~x, t) (9.3)

In the general case, the ensemble averages of these quantities are functions of
both position and time; i.e.,

〈θ(~x, t)〉 ≡ Θ(~x, t) (9.4)

〈ui(~x, t)〉 ≡ Ui(~x, t) (9.5)

If only stationary random processes are considered, then the averages do not
depend on time and are functions of ~x only; i.e.,

〈θ(~x, t)〉 ≡ Θ(~x) (9.6)

〈ui(~x, t)〉 ≡ Ui(~x) (9.7)

Now the averages may not be position dependent either. For example, if the
averages are independent of the origin in position, then the field is said to be
homogeneous. Homogeneity (the noun corresponding to the adjective ho-
mogeneous) is exactly analogous to stationarity except that position is now the
variable, and not time.

161
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It is, of course, possible (at least in concept) to have homogeneous fields which
are either stationary or non-stationary. Since position, unlike time, is a vector
quantity it is also possible to have only partial homogeneity. For example, a field
might be homogeneous in the x1- and x3-directions, but not in the x2-direction.
In fact, it appears to be dynamically impossible to have flows in nature which
are homogeneous in all variables and stationary as well, but the concept is useful,
nonetheless. Such so-called ‘forced’ turbulence, however, can be generated in a
computer, and is both stationary and approximately homogeneous.

Homogeneity will be seen to have powerful consequences for the equations
governing the averaged motion, since the spatial derivative of any averaged quan-
tity must be identically zero. Thus even homogeneity in only one direction can
considerably simplify the problem. For example, in the Reynolds stress transport
equation, the entire turbulence transport is exactly zero if the field is homoge-
neous.

9.2 Multi-point correlations

The concept of homogeneity can also be extended to multi-point statistics. Con-
sider for example, the correlation between the velocity at one point and that at
another as illustrated in Figure 9.1. If the time dependence is suppressed and the
field is assumed statistically homogeneous, this correlation is a function only of
the separation of the two points, i.e.,

〈ui(~x, t)uj(~x′, t)〉 ≡ Bi,j(~r) (9.8)

where ~r is the separation vector defined by

~r = ~x′ − ~x (9.9)

or
ri = x′

i − xi (9.10)

Note that the convention we shall follow for vector quantities is
that the first subscript on Bi,j is the component of velocity at the first
position, ~x, and the second subscript is the component of velocity at the
second, ~x′. For scalar quantities we shall simply put a symbol for the quantity to
hold the place. For example, we would write the two-point temperature correlation
in a homogeneous field as:

〈θ(~x, t)θ(~x′, t)〉 ≡ Bθ,θ(~r) (9.11)

Figure 9.2 shows a typical example. Note how the correlation peaks at zero
separation and dies off as the separation vector increases.

A mixed vector/scalar correlation like the two-point temperature velocity cor-
relation would be written as:

〈ui(~x, t)θ(~x′, t)〉 ≡ Bi,θ(~r) (9.12)
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Figure 9.1: Velocity at two points separated by ~r = ~x′ − ~x.

On the other hand, if we meant for the temperature to be evaluated at ~x and the
velocity at ~x′ we would have to write:

〈θ(~x, t)ui(~x′, t)〉 ≡ Bθ,i(~r) (9.13)

Most books don’t bother with this subscript notation, and simply give each
new correlation a new symbol. At first this seems much simpler, and as long
as you are only dealing with one or two different correlations, it is. But after we
introduce a few more correlations and you read about a half-dozen pages, you find
that you have completely forgotten which symbol stands for which correlation.
Then because it is usually very important to know exactly what the forgotten
symbol means, you thumb madly through the book trying to find where they
were defined in the first place. Since we will use many different correlations and
would like to avoid this useless waste of time thumbing through the book, we will
use this comma system to help us remember1.

9.3 Spatial integral and Taylor microscales

Just as for a stationary random process, correlations between spatially varying,
but statistically homogeneous, random quantities ultimately go to zero; i.e., they

1For this system we can thank Professors Monin and Yaglom who wrote the famous two
volume compendium translated into English by Professor John Lumley [?]
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Figure 9.2: Two-point correlation of a scalar field with vector separation, ~r =
(r1, r2, 0); i.e., in the x1-x2-plane.
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become uncorrelated as their locations become widely separated. Statistical phe-
nomena that behave this way are sometimes referred as ergodic processes. Because
position (or relative position) is a vector quantity, however, the correlation may die
off at different rates in different directions. Thus ‘direction’ must be an important
part of any definition of ‘scales’ from correlation functions, both the directions
associated with the quantities and the direction of the separation between them.

Consider for example the one-dimensional spatial correlation which is obtained
by measuring the correlation between the temperature at two points along a line
in the x-direction, say,

B
(1)
θ,θ (r) ≡ 〈θ(x1, x2, x3, t)θ(x1 + r, x2, x3, t)〉

= Bθ,θ(r, 0, 0) (9.14)

where Bθ,θ is defined by equation 9.11. The superscript “(1)” denotes “the coor-
dinate direction in which the scalar separation, r, has been chosen. This distin-
guishes it from the vector separation, ~r of Bθ,θ(~r). Also, note that the correlation
at zero separation is just the variance; i.e.,

B
(1)
θ,θ (0) = 〈θ2〉 (9.15)

Figure 9.3 shows a typical one-dimensional correlation.
For separations along the 2- and 3-axes we could define other correlations given

by:

B
(2)
θ,θ (r) ≡ 〈θ(x1, x2, x3, t)θ(x1, x2 + r, x3, t)〉 = Bθ,θ(0, r, 0) (9.16)

B
(3)
θ,θ (r) ≡ 〈θ(x1, x2, x3, t)θ(x1, x2, x3 + r, t)〉 = Bθ,θ(0, 0, r) (9.17)

(9.18)

In fact, we could define a one-dimensional correlation in an arbitrary direction,
say given by the unit vector ~r/r, but this would just be the original correlation

function; i.e., B
(~r/r)
θ,θ (r) = Bθ,θ(~r).

9.3.1 Integral scales

The integral scale of θ(~x, t) in the x1-direction can be defined as:

L
(1)
θ ≡ 1

〈θ2〉

∫ ∞

0
B

(1)
θ,θ (r)dr (9.19)

Since the integral defined to be the area under positive values of the two-point
correlation normalized by its value at zero separation, it has the simple geometrical
interpretation shown in Figure 9.3. In particular, it is just equal to the intercept
of the ordinate (separation axis) of a rectangle with the same area and abscissa
intercept as the correlation function. It is easy to see from the figure that the
integral scale can be a useful measure of how large a separation is required in
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Figure 9.3: One-dimensional correlation of a scalar field, B
(1)
θ,θ (r) = Bθ,θ(r, 0, 0).

The intercept of the rectangle with the r-axis illustrates the integral scale, L
(1)
θ .

order for the most of the process to become uncorrelated with itself, typically a
few integral scales.

It is clear that there are at least two more integral scales which could be defined
by considering separations in the 1- and 2 directions; i.e.,

L
(2)
θ ≡ 1

〈θ2〉

∫ ∞

0
B

(2)
θ,θ (r)dr (9.20)

and

L
(3)
θ ≡ 1

〈θ2〉

∫ ∞

0
B

(3)
θ,θ (r)dr (9.21)

In fact, an integral scale could be defined for any direction, say ~r/r; i.e.,

L
(~r/r)
θ,θ =

1

〈θ2〉

∫ ∞

0
Bθ,θ(~r)dr (9.22)

where the integration is in the direction of the separation vector ~r. Note that just
because we can define an integral scale does not necessarily mean it exists, since
the integral of the correlation function can be zero (e.g., if the correlation function
changes sign). We’ll see examples of this later.

The situation is even more complicated when correlations of vector quantities
are considered. For example, consider the correlation of the velocity vectors at
two points, Bi,j(~r). Clearly Bi,j(~r) is not a single correlation, but rather nine
separate correlations: B1,1(~r), B1,2(~r), B1,3(~r), B2,1(~r), B2,2(~r), etc. For each of
these an integral scale can be defined once a direction for the separation vector
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is chosen. For example, the integral scales associated with B1,1 for the principal
directions are

L
(1)
1,1 ≡ 1

〈u2
1〉

∫ ∞

0
B1,1(r, 0, 0)dr (9.23)

L
(2)
1,1 ≡ 1

〈u2
1〉

∫ ∞

0
B1,1(0, r, 0)dr (9.24)

L
(3)
1,1 ≡ 1

〈u2
1〉

∫ ∞

0
B1,1(0, 0, r)dr (9.25)

Integral scales can similarly be defined for the other components of the cor-
relation tensor. Two of particular importance in the historical development of
turbulence theory are

L
(1)
1,1 ≡ 1

〈u2
1〉

∫ ∞

0
B1,1(r, 0, 0)dr (9.26)

L
(1)
2,2 ≡ 1

〈u2
2〉

∫ ∞

0
B2,2(r, 0, 0)dr (9.27)

In general, each integral scale will be different, unless restrictions beyond simple
homogeneity are placed on the process (e.g., like isotropy discussed below). Thus,
it is important to specify precisely which integral scale is being referred to, which
components of the vector quantities are being used, and in which direction the
integration is being performed.

Finally note that the integral scales defined in this section are all physical inte-
gral scales, meaning that they are directly obtainable from the two-point statistics.
They should not confused with the pseudo-integral scale, u3/ε, defined by equa-
tion 4.18 in Chapter 4. As noted there, the pseudo-integral scale is very much
associated with the idea of a large gap in size between the energy-containing
scales and those dissipating most of the energy. In the limit of infinite Reynolds
numbers, it can be argued that the physical and pseudo-integral scales should be
proportional, but the constants of proportionality can vary greatly from flow to
flow. So MIND THE GAP when using or making arguments from either type.

The biggest problem in determining integral scales in the laboratory or from
experimental data is most often with the experiment or simulation itself. In
particular, the correlation at separations significantly greater than integral scale
can affect the integration. This also means that unless the purpose is to examine
the effect of the boundaries on the flow, the windtunnel or computational box
must also much greater in size than the integral scale for the experiment or DNS
to be valid at all. This is a serious problem with many experiments and especially
DNS which purport to be simulations of homogeneous turbulence (and free shear
flows like jets or wakes), but in fact are not.

9.3.2 Taylor microscales

Similar considerations apply to the Taylor microscales, regardless of whether they
are being determined from the correlations at small separations, or from the mean
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Figure 9.4: Sketch showing relation of Taylor microscale, λf to oscullating

parabola of correlation, f(r) = B
(1)
1,1(r).

square fluctuating gradients. The two most commonly used Taylor microscales are
often referred to as λf and λg and are defined by:

λ2
f ≡ 2

〈u2
1〉

〈[∂u1/∂x1]2〉
(9.28)

and

λ2
g ≡ 2

〈u2
2〉

〈[∂u2/∂x1]2〉
(9.29)

The subscripts f and g are historical, and refer to the autocorrelation coefficients
defined by:

f(r) ≡ 〈u1(x1, x2, x3)u1(x1 + r, x2, x3)〉
〈u2

1〉
=

B1,1(r, 0, 0)

B1,1(0, 0, 0)
(9.30)

and

g(r) ≡ 〈u2(x1, x2, x3)u1(x2 + r, x2, x3)〉
〈u2

1〉
=

B2,2(r, 0, 0)

B2,2(0, 0, 0)
(9.31)

It is straightforward to show from the definitions that λf and λg are related
to the curvature of the f and g correlation functions at r = 0. Specifically,

λ2
f =

2

d2f/dr2|r=0

(9.32)

and

λ2
g =

2

d2g/dr2|r=0

(9.33)
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Since both f and g are symmetrical functions of r, df/dr and dg/dr must
be zero at r = 0. It follows immediately that the leading r-dependent term in
the McClaurin series expansion about the origin of each autocorrelations is of
parabolic form; i.e.,

f(r) = 1− r2

λ2
f

+ · · · (9.34)

and

g(r) = 1− r2

λ2
g

+ · · · (9.35)

This is illustrated in Figure 9.4 which shows that the Taylor microscales are
the intersection with the r-axis of a parabola fitted to the appropriate correlation
function at the origin. Fitting a parabola is a common way to determine the Taylor
microscale, but to do so you must make sure you resolve accurately to scales much
smaller than it (typically an order of magnitude smaller is required). Otherwise
the Taylor microscale you determine is more related to the spatial filtering of the
probe or numerical algorithm than to the actual flow.

9.4 Symmetries

It is easy to see that the consideration of vector quantities raises special consider-
ations with regard to symmetries of two-point statistical quantities. These can be
very different, depending on whether the quantities involved are scalars or vectors,
or some combination of each. These symmetry conditions can be used to great
advantage to reduce the quantity of measurements, and as well to confirm that
the fields are truly homogenous and the the measured quantities correct.

For example, as illustrated in Figures 9.2 and 9.3, the correlation between a
scalar function of position at two points is symmetrical in ~r, i.e.,

Bθ,θ(~r) = Bθ,θ(−~r) (9.36)

This is easy to show from the definition of Bθ,θ and the fact that the field is
homogeneous. Simply shift each of the position vectors by the same amount −~r
to obtain:

Bθ,θ(~r) ≡ 〈θ(~x, t)θ(~x′, t)〉
= 〈~θ(~x− ~r, t)θ(~x′ − ~r, t)〉
= 〈~θ(~x, t)θ(~x− ~r, t)〉
= Bθ,θ(−~r) (9.37)

since ~x′ − ~r = ~x. Clearly the positions are reversed and the separation vector is
pointing the opposite way.
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Such is not the case, in general, for vector functions of position. For example,
see if you can prove to yourself the following for a scalar velocity correlation:

Bθ,i(~r) = Bi,θ(−~r) (9.38)

Similarly, the velocity-velocity correlation must satisfy:

Bi,j(~r) = Bj,i(−~r) (9.39)

Clearly the latter is symmetrical in the variable ~r only when i = j.

Exercise: Prove equations 9.38 and 9.39. (Hint: Note that 〈θ(~x−~r)uj(~x, t)〉 =
〈uj(~x, t)θ(~x− ~r)〉 = Bj,θ(−~r).)

These properties of the two-point correlation function will be seen to play an
important role in determining the interrelations among the different two-point sta-
tistical quantities. They will be especially important when we talk about spectral
quantities.

9.5 Implications of Continuity

The equations of mass conservation can be used to relate the derivatives of the
correlations. These can be used to great advantage in reducing the number of cor-
relations which must be measured to completely describe a turbulent field, and
even to verify whether the measured correlations are internally consistent with
each other. Also, continuity together with homogeniety has important implica-
tions for the dissipation, which we have already encountered in Section 4.1. We
shall see another important application in the section below when we consider
isotropy, where it reduces the number of correlations (or spectra) which must be
measured to a single one.

9.5.1 Reduction of Bi,j(~r) to three independent compo-
nents

To see how this works, first write the incompressible continuity equation at point
~x (i.e., ∂ui(~x, t)/∂xi = 0), then multiply it by the velocity at second point, say
uj(~x′, t), and average to obtain:

〈uj(~x′, t)
∂ui(~x, t)

∂xi

〉 = 0 (9.40)

But since uj(~x′, t) does not depend on ~x, it can be pulled inside the derivative, as
can the average, yielding:

∂

∂xi

〈ui(~x, t)uj(~x′, t)〉

=
∂

∂xi

Bi,j(~r, t) = 0, (9.41)
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the last line following from the fact that homogeneity implies that 〈ui(~x, t)uj(~x′, t)〉 =
Bi,j~r) only.

For convenience let’s define ξi = x′
i + xi together with ri = x′

i − xi, which
in turn implies that x′

i = (ξi + ri)/2 and xi = (ξi − ri)/2. Application of the
chain-rule implies immediately that:

∂

∂xi

=
∂ξm
∂xi

∂

∂ξm
+

∂rm
∂xi

∂

∂rm

= δmi
∂

∂ξm
− δmi

∂

∂rm

=
∂

∂ξi
− ∂

∂ri
(9.42)

Using the chain-rule result in equation 9.43 yields immediately:

∂

∂ri
Bi,j(~r) = 0 (9.43)

since Bi,j is a function of ~r only.

By writing the continuity equation at the point, ~x′, and multiplying by the
velocity at the point, ~x, another three equations can be similarly derived. The
result is:

∂

∂rj
Bi,j(~r) = 0 (9.44)

It is clear that with both equations 9.43 and 9.44 together, we have six equa-
tions in nine unknowns. Since our equations are differential equations, this means
that all correlations can be derived to within a constant if any of three are known.
But since all the correlations go to zero with increasing separation, this means
that only three of the components of the two-point Reynolds stress tensor are
independent. Said another way, we only need to measure three of them to find all
the others – but only if the flow is incompressible. These relations among the var-
ious components of the two-point Reynolds stress equations will especially useful
when we consider spectra in the next section, since the differential equations will
be replaced by algebraic ones.

9.6 Relations among the derivative moments

Homogeniety also considerably reduces the number of independent derivative mo-
ments. To see how, consider the average of the product of the velocity derivatives
at two different points. By using the fact that ui(~x, t) is not a function of ~x′ nor
is uj(~x′, t) a function of ~x, it follows that:

〈∂ui(~x, t)

∂xm

∂uj(~x′, t)

∂x′
n

〉 =
∂2

∂xm∂xn

Bi,j(~x′ − ~x, t) (9.45)

= − ∂2

∂rm∂rn
Bi,j(~r, t) (9.46)
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where we have used equation 9.41 twice in succession.
But since the order of differentiation is irrelevant in the last expression on the

right-hand side, the same must be also true on the left-hand side. In particular
it must be true for ~r = 0 (i.e., ~x′ = ~x). Thus the derivative moments must be
related by:

〈 ∂ui

∂xm

∂uj

∂xn

〉 = 〈 ∂ui

∂xn

∂uj

∂xm

〉 (9.47)

where we have reversed the indices with respect to which we are differentiating.

9.7 Elimination of the cross-derivative moments

The incompressible continuity equation can be used together with homogeneity to
deduce another important result for homogeneous flows: namely that 〈sijsij〉 =
〈ωiωi〉. And immediate consequence is that for homogeneous turbulence:

ε = 2ν〈sijsij〉 = ν〈∂ui

∂xj

∂ui

∂xj

〉 (9.48)

To see this, multiply the continuity equation by ∂u1/∂x1, ∂u2/∂x2, and ∂u3/∂x3

respectively, then average to obtain:

〈
[
∂u1

∂x1

]2
〉+ 〈∂u1

∂x1

∂u2

∂x2

〉+ 〈∂u1

∂x1

∂u3

∂x3

〉 = 0 (9.49)

〈∂u2

∂x2

∂u1

∂x1

〉+ 〈
[
∂u2

∂x2

]2
〉+ 〈∂u2

∂x2

∂u3

∂x3

〉 = 0 (9.50)

〈∂u3

∂x3

∂u1

∂x1

〉+ 〈∂u3

∂x3

∂u2

∂x2

〉+ 〈
[
∂u3

∂x3

]2
〉 = 0 (9.51)

Now by using equation 9.47 for the derivative moments, we can reverse the indices
in the crossed moments and rewrite this as:

〈
[
∂u1

∂x1

]2
〉+ 〈∂u1

∂x2

∂u2

∂x1

〉+ 〈∂u1

∂x3

∂u3

∂x1

〉 = 0 (9.52)

〈∂u1

∂x2

∂u2

∂x1

〉+ 〈
[
∂u2

∂x2

]2
〉+ 〈∂u2

∂x3

∂u3

∂x2

〉 = 0 (9.53)

〈∂u1

∂x3

∂u3

∂x1

〉+ 〈∂u2

∂x3

∂u3

∂x2

〉+ 〈
[
∂u3

∂x3

]2
〉 = 0 (9.54)

Since there are three independent equations, they can be solved to obtain the
crossed moments in terms of the squared derivatives as:
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〈∂u1

∂x2

∂u2

∂x1

〉 = −1

2

+〈
[
∂u1

∂x1

]2
〉+ 〈

[
∂u2

∂x2

]2
〉 − 〈

[
∂u3

∂x3

]2
〉

 (9.55)

〈∂u1

∂x3

∂u3

∂x1

〉 = −1

2

+〈
[
∂u1

∂x1

]2
〉 − 〈

[
∂u2

∂x2

]2
〉+ 〈

[
∂u3

∂x3

]2
〉

 (9.56)

〈∂u2

∂x3

∂u3

∂x2

〉 = −1

2

−〈
[
∂u1

∂x1

]2
〉+ 〈

[
∂u2

∂x2

]2
〉+ 〈

[
∂u3

∂x3

]2
〉

 (9.57)

We will use them immediately in the section immediately following to simplify
the dissipation in homogeneous flows. These relations will also be found to be
particularly useful when the additional constraints of axisymmetry or isotropy
are imposed toward the end of this chapter.

9.7.1 The ‘homogeneous’ dissipation

The dissipation is given by ε = 2ν〈sijsij〉, which can be expanded to obtain:

ε = 2ν〈sijsij〉

= ν

{
〈∂ui

∂xj

∂ui

∂xj

〉+ 〈∂ui

∂xj

∂uj

∂xi

〉
}

(9.58)

= ν

〈
[
∂u1

∂x1

]2
〉+ 〈

[
∂u1

∂x2

]2
〉+ 〈

[
∂u1

∂x3

]2
〉

+ 〈
[
∂u2

∂x1

]2
〉+ 〈

[
∂u2

∂x2

]2
〉+ 〈

[
∂u2

∂x3

]2
〉

+ 〈
[
∂u3

∂x1

]2
〉+ 〈

[
∂u3

∂x2

]2
〉+ 〈

[
∂u3

∂x3

]2
〉


+ ν

〈
[
∂u1

∂x1

]2
〉+ 〈∂u1

∂x2

∂u2

∂x1

〉+ 〈∂u1

∂x3

∂u3

∂x1

〉

+ 〈∂u2

∂x1

∂u1

∂x2

〉+ 〈
[
∂u2

∂x2

]2
〉+ 〈∂u2

∂x3

∂u3

∂x2

〉

+ 〈∂u3

∂x1

∂u1

∂x3

〉+ 〈∂u3

∂x2

∂u2

∂x3

〉+ 〈
[
∂u3

∂x3

]2
〉

 (9.59)

From equations 9.52 to 9.54 it is immediately obvious the second bracketed
term is identically zero for homogenous incompressible flow (since each line adds
to zero). But the first bracketed term is just 〈[∂ui/∂xj]

2〉. Thus for homogeneous
incompressible flow the dissipation is given by:

ε = ν〈∂ui

∂xj

∂ui

∂xj

〉, (9.60)
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exactly as we surmised must be true from the various forms of the turbulence
kinetic energy equation of section 4.1.

There are several other similar relations that appear in turbulent flow analyses
and experiments. For example, application of the derivative symmetry conditions
lead immediately to the conclusion that in homogeneous turbulence the mean
square strain rate is equal the mean square rotation rate which is in turn equal to
half the mean square vorticity (or enstrophy); i.e.,

〈sijsij〉 = 〈ΩijΩij〉 =
1

2
〈ωiωi〉 (9.61)

Execise: Prove that for homogeneous incompressible flow the mean square strain
rate equals the mean square rotation rate and half the mean square vorticity for
homogeneous incompressible flow; i.e., equations 9.61 above.

9.7.2 Pressure fluctuations in homogeneous turbulence

Equations 9.61 have an interesting application to the pressure fluctuatuations
in homogeneous turbulence. By taking the divergence of the constant desnsity
Navier-Stokes equations, it follows immediately that the pressure fluctuations are
described by the solution to the following Poisson’s equation:

−1

ρ
∇2p̃ =

∂ũi

∂xj

∂ũj

∂xi

(9.62)

Decomposing the velocity and pressure into mean and fluctuating parts (e.g.,
p̃ = P + p, etc), and subtracting the mean equation leaves an equation for the
pressure fluctuations, p(~x, t), as:

−1

ρ
∇2p =

[
∂Ui

∂xj

∂uj

∂xi

+
∂Ui

∂xj

∂uj

∂xi

]
+

[
∂ui

∂xj

∂uj

∂xi

− 〈∂ui

∂xj

∂uj

∂xi

〉
]

(9.63)

The first two terms are usually referred to as turbulence-mean shear interaction,
and the latter as the turbulence-turbulence interaction terms.

But we can further decompose the last fluctuating term into the difference
between the strain-rate tensor squared and the rotation-rate tensor squared; i.e.,

∂ui

∂xj

∂uj

∂xi

= sijsij − ΩijΩij (9.64)

Thus equation 9.63 can be rewritten as:

−1

ρ
∇2p =

[
∂Ui

∂xj

∂uj

∂xi

+
∂Ui

∂xj

∂uj

∂xi

]
+ [(sijsij − (〈sijsij〉)− (ΩijΩij − 〈ΩijΩij〉)]

(9.65)
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Thus the turbulence turbulence interaction terms consist of the difference of two
quantities (the square of the fluctuating strain and rotation rates) which individ-
ually can be quite large, but their difference quite small. And in fact, as we have
seen above, in homogenous turbulence the difference of the averages of the squared
strain-rate and rotation-rate tensors is exactly zero!

Exercise: Show that the square of the rotation rate is equal to half the square
of the vorticity (i.e., ΩijΩij = ωiωi/2); and rewrite equation 9.65 using it.

9.8 Isotropy

It should be clear even at this point that two point statistical quantities can be
quite complex, even to simply define which ones we are talking about. Fortu-
nately there are symmetries which can both help us reduce the number, and also
help us decide the degree to which real flows or numerically generated ones ap-
proximate homogenous ones. In addition to these basic symmetries imposed by
homogeneity, it is sometimes convenient to make even more stringent assumptions
about the statistical character of the turbulence; e.g., axisymmetry or isotropy.
Axisymmetry in this context does not mean the same thing as the axisymmetric
shear flows discussed earlier in which the statistical properties were constant in
circular contours about a centerline. What axisymmetry means here is that the
statistics at every point have a preferred direction about which the properties are
symmetrical. And similarly isotropic means is that there is no preferred direction
at all — in fact, the turbulence statistical properties at a point even have reflec-
tional symmetry. In this section we shall consider only implications of isotropy.

9.8.1 An example from fluid mechanics: viscous stress

Before looking at turbulence, let’s make a point of contact with what you should
have already from your study of Fluid Mechanics. (If you haven’t seen this be-
fore, pick up any good fluid mechanics book.) In order to relate the viscous (or

deviatoric) stress tensor, say τ
(v)
ij (~x, t), to the velocity field one begins by noting

that the stress tensor must be a functional of the velocity at all points in the flow
and at all times up to the present. Then by a serious of arguments that relate to
how it must appear in different coordinate systems one decides that it can really
only be a function of the strain-rate. Then by another series of assumptions we
argue that there might be some flows in which history played no role, and in fact
further, the stress might depend on only the first power of the strain-rate locally.

With all of these assumptions we can write: τ
(v)
ij = Cijkl skl, meaning that

we still have 81 undetermined material coefficients. But we know immediately
that some of these must be equal since both the stress tensor and the strain-rate
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tensor are symmetrical; i.e., τij = τ
(v)
ji and sij = sji. This reduces the number of

unknowns from 81 to 36. Now we begin to make assumptions about the material,
in particular that it is an isotropic material. This means that it should be be
independent of how we view it, or even independent of whether we view it in a
mirror. So step by step we consider what happens if we rotate about the 1-axis,
then the 2-axis, etc., and insist these remain invariant during the transformation.
And then we examine what happens if we reflect about the axes; i.e,, the 1-axis
becomes the negative 1-axis, etc. When have exhausted all the possibilities we
end up with only two undetermined constant, our familiar Newtonian fluid model;
i.e.,

τ
(v)
ij = 2µ[sij − skkδij/3] + µ2skk. (9.66)

Amazingly, by simply exploring the implications of symmetries and isotropy, we
have reduced the number of unknowns to two simple material properties. And
the second of these, the second viscosity, µ2, can often be assumed to be zero.

The implications of isotropy for turbulence are at least as profound. Even
though flows are never really quite isotropic, we can learn a great deal by exploring
what they would be like if they were. And of course we will not be able to reduce
our result to simple material constants, since it is the statistics of the flow that
will be assumed to be isotropic, not the underlying material.

9.8.2 Isotropic single-point correlations

There are a number of statistical quantities we have seen already for which we
stated the effects of isotropy. For example, consider the single point Reynolds
stress tensor, 〈uiuj〉. First rotate the coordinate system 90◦ around the x1-axis
so the old x3-axis becomes the new x′

2 axis and the old negative x2-axis becomes
the new x′

3-axis. It is easy to see 〈u′
2u

′
3〉 in the new coordinate system must be

equal to −〈u2u3〉 in the old. But isotropy requires that the form of 〈uiuj〉 be
independent of coordinate system. This clearly is possible only if 〈u2u3〉 = 0.
Rotations and reflections about the other axis lead to similar conclusions for all
the off-diagonal terms. Moreover they also imply that all the diagonal terms must
be equal. Therefore isotropy implies that 〈u2

1〉 = 〈u2
2〉 = 〈u2

3〉 and 〈uiuj〉 = 0
for i 6= j. Similar considerations apply to the other second order tensors we
encountered as well.

We also encountered the scalar-vector correlations, like the pressure-velocity
correlation, 〈puj〉. Consider a mirror image transformation in which the old x1-
axis becomes the negative of the new x′

1 axis. It follows immediately that 〈p′u′
1〉 =

−〈pu1〉 since the direction of the velocity is reversed. But isotropy requires that the
correlation be independent of rotations and reflections of the coordinate system.
Hence the only possible value of the single point pressure-velocity correlation is
zero. Similar considerations apply to all vector statistical properties, including the
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mean flow. So, for example, the only possible value of the mean flow in isotropic
turbulence is zero; i.e., no mean flow at all.

9.8.3 Isotropic two-point statistics

If a turbulent field is assumed to be isotropic, this very much restricts the form of
the two-point correlations (and their Fourier transforms as well). And as we shall
see below, the consequences of isotropy for two-point statistical properties are
considerably more interesting than for the single-point quantities. The presence
of the separation vector ~r = ~x′−~x makes the problem a bit more complicated than
for the single point quantities considered above. First it introduces a whole new
scalar invariant, r = |~r| = (riri)

1/2. Second, if some of the statistical properties
under consideration are vectors, it introduces new ‘angles’ into consideration from
the inner products that can be formed with it; e.g., ~u·~r = uiri = |~u||~r| cos θ, where
θ is the angle between them. It is clear that we should expect very different results
depending on whether the correlations under consideration are scalars, vectors or
tensors, and indeed this is the case.

Consider first the two-point correlation of an isotropic scalar field like Bθ,θ(~r)
above. We already know that Bθ,θ(~r) = Bθ,θ(−~r) from homogeneity alone. But if
the field is isotropic this correlation must be invariant no matter how the coordi-
nate system is rotated or reflected about itself. Since the components of ~r change
with coordinate system and only its length, r = |~r| is invariant, Bθ,θ(~r) can be
invariant only if depends only on r; i.e.,

Bθ,θ(~r) = Bθ(r) (9.67)

Now consider a two-point correlation comprised of a vector and a scalar quan-
tity, like Bp,i(~r) = 〈p(~xui(~x+~r)〉. Again homogeneity alone implies that Bp,i(~r) =
Bi,p(−~r), and vice versa, so this must also be true for an isotropic field as well.
But as we rotate and reflect both the magnitude, r, and the angle between ~r and
~u must be invariant. It is not immediately obvious, but straightforward to show,
that the most general form of a two-point scalar-vector correlation in an isotopic
field is given by:

Bp,i(~r) = BpL(r)
ri
r

(9.68)

Bj,p(~r) = BLp(r)
rj
r

= −BpL(r)
rj
r

(9.69)

Two-point correlations involving two vectors, say ui = ui(~x) and u′
j = uj(~x+~r),

in addition to the separation vector, ~r are even more interesting. The reasons
can be seen in Figure 9.5. In addition to the symmetry requirements imposed
by homogeneity, Bi,j(~r) = Bj,i(−~r), all of the angles between the vectors must
be maintained as the coordinate system is rotated and reflected. Again it is
complicated but straightforward to show that the most general form of a two-
point vector-vector correlation in an isotropic field is given by:

Bi,j(~r) = A(r)rirj +B(r)δij (9.70)
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Figure 9.5: Sketches showing which velocity components are used to make up BLL,
BLL, BNN , BLM ,BLN and BNM respectively, and their relation to the separation
vector.
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where A(r) and B(r) are two functions which depend on r only, and δij is the
isotropic tensor (or Kronecker delta tensor). We will find considerable use for the
spectral equivalent of this result in the next chapter.

It is customary (and convenient) to express the functions A and B in terms of
the two-point velocity correlations we commonly measure (see Figure 9.5). The
first of these is denoted as BLL(r) and called the longitudinal correlation because
the two-components of velocity are aligned with the separation vector. And the
second is denoted as BNN(r) and called the normal or transverse correlation,
since the two components of velocity are chosen to be in the same plane but
perpendicular to the separation variable.

To see how these determine A and B simply follow the directions above. For
example BLL(r) would have to be the same as B1,1(r, 0, 0), but B2,2(0, r, 0) would
also suffice (as would any choice for which the vectors are collinear). Substituting
into equation 9.70 yields BLL(r) as:

BLL(r) = B1,1(r, 0, 0) = A(r)r2 +B(r) (9.71)

Similarly, BNN(r) can be determined from:

BNN(r) = B2,2(r, 0, 0) = B(r) (9.72)

since r2r2 = 0 if ~r = (r, 0, 0). We now have two equations in two unknowns, so we
can solve for A(r) and B(r) to obtain the general form:

Bi,j(~r) = [BLL(r)−BNN(r)]
rirj
r2

+BNN(r)δij (9.73)

The number of unknown functions can be reduced to one (either BLL or BNN) by
employing the continuity equations derived in above in Section 9.5

Exercise: Find BLL in terms of BNN Use the isotropic relation of equation 9.73
together with the incompressible continuity equations 9.43 and 9.44 to obtain:

BLL = BNN + r
dBLL

dr
(9.74)

(Hint: Note that ∂BLL/∂ri = dBLL/dr (∂r/∂ri) and that ∂r/∂rj = rj/r. Show
this by differentiating r2 = r21 + r22 + r23) term by term.)

9.8.4 Derivative moments in isotropic turbulence

Isotropy has a powerful influence on the velocity derivative moments. In fact,
only one of them is independent, so all of the others can be expressed in terms of
it. For example, if we choose to express the others in term of 〈[∂u1/∂x1]

2〉, the
results are:

〈
[
∂u1

∂x1

]2
〉 = 〈

[
∂u2

∂x2

]2
〉 = 〈

[
∂u3

∂x3

]2
〉, (9.75)
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〈
[
∂u1

∂x1

]2
〉 =

1

2
〈
[
∂u1

∂x2

]2
〉 = 1

2
〈
[
∂u2

∂x1

]2
〉

=
1

2
〈
[
∂u1

∂x3

]2
〉 = 1

2
〈
[
∂u3

∂x1

]2
〉

=
1

2
〈
[
∂u2

∂x3

]2
〉 = 1

2
〈
[
∂u3

∂x2

]2
〉 (9.76)

and

〈
[
∂u1

∂x1

]2
〉 = −〈∂u1

∂x2

∂u2

∂x1

〉

= −〈∂u2

∂x3

∂u3

∂x1

〉

= −〈∂u2

∂x3

∂u3

∂x2

〉 (9.77)

It follows immediately the dissipation for isotropic turbulence can be quite
simply expressed as:

ε = 15ν〈
[
∂u1

∂x1

]2
〉 (9.78)

But any of the other derivatives could have been used as well; e.g.,

ε =
15

2
ν〈
[
∂u2

∂x1

]2
〉. (9.79)

9.8.5 Isotropic integral scale and Taylor microscales

It is straightforward to show from the form of the isotropic correlation function
that the integral scales based on the longitudinal correlation, BLL(r), is double
that of the normal correlation, BNN(r).

Exercise: Prove that L
(1)
2,2 and L

(2)
1,1 are twice L

(1)
1.1. (Hint: Use equation 9.74 and

integrate by parts.)

It is similarly quite easy to show from the derivative relations and the defi-
nitions of the Taylor microscales that λf =

√
2λg. It follows immediately that

the dissipation can be expressed in terms of the Taylor microscales for isotropic
turbulence as:

ε = 30ν
u2

λ2
f

= 15ν
u2

λ2
g

(9.80)
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since u2 = 〈u2
1〉 = 〈u2

2〉 = 〈u2
3〉.

Exercise: Prove that λ2
f = 2λ2

g.

9.9 Axisymmetric Turbulence

A less restrictive hypothesis about turbulence than isotropy is that all statistical
measures have rotational symmetry about a given axis. This is called axisymmet-
ric turbulence.2 In fact very few flows satisfy the conditions for isotropic turbu-
lence, but many seem to satisfy the requirements and constraints for axisymmetric
turbulence. For example, in turbulent shear flows, the produced component of
the turbulence energy is larger than the other two components which are approx-
imately equal. This is especially true for the derivative moments, where many
flows appear to satisfy the axisymmetric relations but not the isotropic ones.3 In
spite of this axisymmetric turbulence has not been much exploited in modeling,
perhaps because there is virtually nothing about it in texts. We shall to remedy
that in this section.

We focus here only on the velocity derivatives. If we imagine the flow to have a
preferred direction, say prescribed by the unit vector, ~γ, then a Taylor expansion
of the most general form of the two-point axisymmetric tensor around the point
~r = 0 is given by:

Bi,j(~r) = 2(α02 − α22 + β02)rirj − (2α00 + β00) + r2 {[−4α02 + 2α22 − 3β02)

+µ̃2(2β02 − β22 − 8α22)
}]

δij +
[
β00 + r2(3β02 − 2α22 + β22µ̃

2)
]
γiγj

+2rµ̃(γirj + riγj)(2α00 − β02) (9.81)

where ~γ is a unit vector in the preferred direction and µ̃ = ~γ · ~r/r is the inner
product of ~γ with a unit vector in the direction of the separation vector, ~r. The
two invariants, α00 and β00 can be related to the components of the turbulence
energy by:

α00 = −1

2
〈u2

1〉 (9.82)

β00 = 〈u2
1〉 − 〈u2

2〉
= 〈u2

1〉 − 〈u2
3〉 (9.83)

where it is presumed that 〈u2
2〉 = 〈u2

3〉. These will not enter the axisymmetric
derivative relations.

2The theory of axisymmetric turbulence was first developed by Chrandresekhar in 1950.
3The idea of locally axisymmetric turbulence appears to have originated with George and

Hussein (1991), J. Fluid Mechanics, vol. 233, pp 1 -23.
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It is relatively easy to show that:

B1,1(~r) = −2α00 − [2α02 + 2α022]r
2
1 − 4α02(r

2
2 + r23) (9.84)

B2,2(~r) = −(2α00 + β00)− [4α02 + 6α22 + β02 + β22]r
2
1

−[2α02 + β02]r
2
2 − [4α02 − 2α22 + 3β02]r

2
3 (9.85)

B2,2(~r) = −(2α00 + β00)− [4α02 + 6α22 + β02 + β22]r
2
1

−[4α02 − 2α22 + 3β02]r
2
2 − [2α02 + β02]r

2
3 (9.86)

Note that the last two just have r2 and r3 reversed, consistent with the symmetry
about the 1-axis. The off-diagonal terms of Bi,j reduce to:

B1,2(~r) = 2(α02 + α22)r1r2 (9.87)

B1,3(~r) = 2(α02 + α22)r1r3 (9.88)

B2,3(~r) = 2(α02 − α00 + β00)r2r3 (9.89)

After some work the general derivative moments can be shown to be given by:

〈 ∂ui

∂xm

∂uj

∂xn

〉 = (−2α02 + 2α22 − 2β02)(δinδjm + δimδjn) (9.90)

+ {(8α02 − 4α22 + 6β02)δmn − (4β02 − 2β22 − 16α22)δ1mδ1n} δij
− (4α02 − 2β02)[γi(δ1mδjn + δjmδ1n) + γj(δ1mδin + δimδ1n)]

It follows that of the 45 possible derivative moment combinations, all but 15 are
zero in axisymmetric turbulence. The non-zero moments depend only on α02, α22,
β02, and β22.

If the 1-axis is chosen as the axis of symmetry,then the non-zero moments are:

〈
[
∂u1

∂x1

]2
〉 = 4α02 + 4α22 (9.91)

〈
[
∂u2

∂x2

]2
〉 = 〈

[
∂u3

∂x3

]2
〉 = 4α02 + 4β02 (9.92)

〈
[
∂u1

∂x2

]2
〉 = 〈

[
∂u1

∂x3

]2
〉 = 8α02 (9.93)

〈
[
∂u2

∂x1

]2
〉 = 〈

[
∂u3

∂x1

]2
〉 = 8α02 + 12α22 + 2β02 + 2β22 (9.94)

〈
[
∂u2

∂x3

]2
〉 = 〈

[
∂u3

∂x2

]2
〉 = 8α02 + 4α22 + 6β02 (9.95)

The cross-derivative moments are:
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〈∂u1

∂x2

∂u2

∂x1

〉 = 〈∂u1

∂x3

∂u3

∂x1

〉 = −2(α02 + α22) (9.96)

〈∂u2

∂x3

∂u3

∂x2

〉 = −2(α02 − α22 + β02) (9.97)

It follows immediately by substitution into their definitions that the dissipa-
tion, ε, and enstrophy (mean square vorticity), 〈ωiωi〉, are given by:

ε/ν = 〈ωiωi〉 = [60α02 + 20α22 + 20β02 + 4β22] (9.98)

There are a variety of ways to solve for the four invariants in terms of four inde-
pendent derivative moments. These choice is generally made from what is easiest
to obtain experimentally. For example, with hot-wire anemometers a particularly
convenient choice of derivatives to measure are ∂u1/∂x1, ∂u1/∂x3, ∂u2/∂x1 and
∂u3/∂x1. It is easy to show the the relations above yield:

α02 =
1

3
〈
[
∂u1

∂x3

]2
〉 (9.99)

α22 =
1

4

〈
[
∂u1

∂x3

]2
〉 − 1

2
〈
[
∂u1

∂x3

]2
〉

 (9.100)

β02 =
1

6

〈
[
∂u2

∂x3

]2
〉+ 〈

[
∂u1

∂x1

]2
〉 − 3

2
〈
[
∂u1

∂x3

]2
〉

 (9.101)

β22 =
1

2

〈
[
∂u2

∂x1

]2
〉+ 〈

[
∂u1

∂x3

]2
〉 − 10

3
〈
[
∂u1

∂x1

]2
〉 − 1

3
〈
[
∂u2

∂x3

]2
〉

 (9.102)

It follows that the dissipation and enstropy are given for this choice of inde-
pendent derivatives as:

ε = ν

5

3
〈
[
∂u1

∂x1

]2
〉+ 2〈

[
∂u1

∂x3

]2
〉+ 2〈

[
∂u2

∂x1

]2
〉+ 8

3
〈
[
∂u2

∂x3

]2
〉

 (9.103)

Exercise: Derive equations 9.102 and 9.103.

Alternatively one might choose derivatives depending only on measurements in
the 1- and 2-directions; e.g., when using planar particle image velocimetry (PIV).
The dissipation can be shown in this case to be given by:

ε = ν

−〈
[
∂u1

∂x1

]2
〉+ 2〈

[
∂u1

∂x2

]2
〉+ 2〈

[
∂u2

∂x1

]2
〉+ 8〈

[
∂u2

∂x2

]2
〉

 (9.104)
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Exercise: Derive equation 9.104. Hint: first solve for the invariants in terms of
these derivative moments.



Chapter 10

How do we decompose turbulence
into ‘scales of motion’?

10.1 Scales of turbulence

In the preceding chapter we have come to understand which terms do what in the
incompressible Reynolds-averaged Navier-Stokes equations. We know now that it
is the Reynolds stress working against the mean velocity gradient that accounts
for taking energy from the mean flow and putting it into the turbulence (at least
in most situations). And we know it is the dissipation (of turbulence energy)
which takes this kinetic energy out from the turbulence and sends it along on an
irreversible path to internal energy. So it seems there are no mysteries left, right?
Actually there is quite a bit left to think about, especially if we want to know how
these processes actually happen. And given all of the moments about which we
need to make closure hypothesis to use the RANS e equations at all, we really all
the “how” we possibly can.

Let me point something out again, something you probably just let slide by
the first time. The Reynolds stresses are mostly associated with the large and
energetic scales of motion, the so-called energy containing scales. But the dissi-
pation takes place at the very smallest scales of motion, those characterized in
high Reynolds number turbulence by the Kolmogorov microscale. If this picture
is really true, how does the energy get from the large scales to the small scales?
Or putting it another way: where in the equations is there a term (or terms)
that accounts for this apparently necessary transfer of energy from large to small
scales?

Obviously this whole “breakdown” of the energetic scales to smaller scales is
the key to the entire role of turbulence as the primary mechanism for energy dissi-
pation. If this didn’t happen, then there would be no reason to expect < sijsij >
>> SijSij. And thus no way the turbulence dissipation could dominate direct vis-
cous dissipation by the mean flow, which it most certainly does in most instances
where turbulence occurs.

But why does this really matter? Consider the following examples. If you
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wanted to increase dissipation (e.g., to slow down an airplane) then you would
want to increase the rate at which energy is transferred to the smaller scales. If
you wanted to decrease dissipation (e.g., to save fuel in flight), then obviously you
would like to interfere with and reduce this downward cascade. Regardless of its
practical interest, the manner in which different scales of motion exchange energy
is clearly VERY important.

But suppose you find you are not able to significantly alter the rate at which
energy is sent from large to small scales? What can you do now? The obvious
alternative is to prevent the energy from getting into the turbulence in the first
place. But how do you do this? You know it is the Reynolds stress working
against the mean velocity gradient that “produces” turbulence energy from the
mean flow. But this is like saying that money comes from a bank. Where does
the Reynolds stress come from? How does it accomplish this energy transfer from
mean to fluctuation? You can guess that it must have something to do with the
large scales of motion, since that’s where the most energy is. But how and why
did it get there? Clearly some kind of flow instability must be at work here. If so,
is it the same kind of instabilities that transfer energy the from the large scales
at which it is produced to the much smaller scales at which it is dissipated? Or
is there something entirely different at work here?

An even more fundamental question is: what do we mean when we talk about
‘scales’ of motion at all? When we look up at the clouds or the exhaust from a
smoke stack, we can certainly imagine that we see different ‘scales’ of motion. The
same is true when we observe the breakdown of the smoke rising from a smoldering
cigarette or match, or as we pour cream into a cup of coffee. But to carry out
a physical analysis, we must somehow translate our visualization of ‘scales’ into
mathematics of scale. And that is much more difficult.

There are many ways we can imagine spatially averaging, filtering (or ‘win-
dowing’) the information about turbulence that we see or measure or simulate.
For example, we can easily invent a ‘volume-averaged’ turbulent velocity field,
u
(v)
i (~x, t) defined by

u
(v)
i (~x, t) =

1

v

∫ ∫ ∫
v
ui(~x− ~x′, t)d~x′ (10.1)

This is just a convolution integral which produces a new velocity, uv
i , from the

original instantaneous field by averaging it around some neighborhood v of the
point ~x. And of course in doing so we will smooth out (or average out) fluctuations
that are smaller than the characteristic dimension of the volume over which we
have averaged. This would seem to be exactly what we are looking for, since
simply by changing the volume, or looking at the differences between volumes of
different sizes, we can look at any ‘scale’ of motion we please.

But now try to do the same volume-averaging to the Navier-Stokes equations.
Immediately you will discover that you cannot compute anything without facing
the same kind of closure problems that always result from averaging. No matter
how we average, or over what scale, we are always left with trying to account for
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what is affecting our averages by things that you thought we averaged out. When
we made the continuum hypothesis, we ended up with stresses. When we used
the Reynolds decomposition to produce the RANS equations, we ended up with
Reynolds stresses. And no matter how we spatially average, we will always end
up with ‘sub-volume’ stresses. Such volume averages are the basis most so-called
‘large eddy simulations’ (or LES), and finding suitable closure models for the
sub-volume (or ‘sub-grid’) scale stresses represents one of the greatest challenges.

Unfortunately, in turbulence (like the stresses in many non-Newtonian fluids
as well), often the effects of the sub-grid stresses are not local (in time or space),
so simple gradient hypotheses do not work very well. Obviously, just as we must
look at molecular structure to understand non-Newtonian effects in fluids, or look
at grain structure to understand some solid materials, we need to figure out a way
to literally tear the turbulence apart to understand what is really going on. This
chapter and the ones that follow it are all how to do this, and do it in a way that
leads us to dynamical equations. Only by analyzing such equations can we truly
say we understand ‘the physics’.

10.2 The anatomy of turbulent motions

Clearly we need a way to describe mathematically the different scales of motion.
Moreover, it can only be useful to us (wearing our engineering hats) if it leads us
to a set of equations that describe these different scales. And these equations must
tell us how the different scales transfer energy to each other, and how they get
energy from the mean flow in the first place. These are among the most difficult
questions in turbulence for the physicists and mathematicians, and the successful
resolution will be of enormous importance for engineers. In this chapter we will
look at one very powerful approach to this problem.

Now it is really simple to see the evolution from large scales to small scales in
nature. All you have to do is look into a coffee cup after you have added cream
and stirred. But it is really difficult to try to quantify exactly how all this relates
to simple vortical structures. Even when we succeed, it is not at all clear how
these structures (or vortices) at different scales interact with (or evolve from) each
other. Worse, though, it is almost impossible to write down equations to describe
what we see.

Think of the following analogy with biology. It is one thing to talk about the
anatomy of the human body, another to talk about its physiology. Anatomy de-
scribes what is there (like arms and legs and internal organs), physiology explains
how things work. Both are essential, but anatomy alone would be pretty useless,
and physiology alone impossible. But at the same time, imagine trying to even
talk about physiology without having anatomical terms so we know which part of
the body is being analyzed. So it is with turbulence: the ‘anatomy’ must allow us
to do ‘physiology’. Words that do not lead to equations are of very limited value,
no matter how vivid and accurate their description of the flow.
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So we need a mathematical way to break turbulent velocities down into various
scales of motion. Now it is here that most introductory books simply give up, and
either try to convince you (usually with lots of hand-waving and verbal descrip-
tions) that it is all obvious. Or else they go immediately into spectral or structure
function analysis, leaving you mostly on your own to figure out why these are
important. The former approach cannot possibly succeed since you don’t have to
go very far to realize something is missing; namely any way to connect all these
mental pictures with equations. And the latter leaves you shaking your head won-
dering what happened, why we switched to Fourier space, and how these powerful
mathematical techniques could possibly have any relevance to real flows.

I am going to try something totally different in the history of introductory
turbulence, so you have a chance here to either make me look like an educational
pioneer or a complete fool. It is my view that most students are smart enough
and know enough simple math that we can provide a satisfactory and correct
answer to the question of scales in turbulence motion. This will eventually lead
us to a subject that strikes terror into the hearts of even many senior turbulence
investigators: the POD. But don’t worry. We only need some rather simple
calculus. Luckily for us, we will find it leads us to a gold mine of well-known
mathematical results accumulated over the past 200 years.

Now the method we shall discuss is surely not the only way to decompose a
turbulent flow. And it may not even ultimately prove to be the best way. But it
certainly will be seen to be a sure way to both break the flow down into “things”
which can be sometimes be interpreted as “scales of motion”. From it, we shall
see that spectral analysis falls out rather naturally as the ideal way to decompose
a homogeneous flow. Most importantly, whether we can interpret the results as
‘scales’ or not, we can always end up with equations which describe how each
piece evolves and interacts with the others.

The problem was originally posed for turbulence by John Lumley1 in the fol-
lowing manner: suppose we have a random velocity field, ui(·), where ‘·’ represents
~x, t or some subset of them. We seek to find a deterministic vector field, say φi(·),
which has the maximum projection on our random vector field, ui, in a mean
square sense. In other words, we would like to find a whole new deterministic
field represented by φi(·) for which < |(ui(·), φ∗

i (·))|2 > is maximized.
If we think of both ui and φi as functions belonging to Hilbert space (I bet

this sends most of you scurrying for those dusty old math books), then this inner
product can be written as :

(ui(·), φ∗
i (·)) =

∫ ∫ ∫
V
ui(·)φ∗

i (·)d(·) (10.2)

where the integral is over the entire domain defined by the physical extent of the
turbulent field.

1Professor John Lumley, now at Cornell, was (and still is) one of the leading turbulence
experts in the last half of the 20th century. And he is rather special to me since he was my Ph.d
dissertation advisor.
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It is pretty easy to show by the calculus of variations2 that the appropriate
choice of φi(·) to maximize its projection onto the velocity field is the solution to
the following integral equation:∫

region
Rij(·, ·′)φj(·′)d(·′) = λφi(·) (10.3)

where Ri,j(·, ·′) is the two point correlation function given by:

Ri,j(·, ·′) ≡< ui(·)uj(·′) > (10.4)

and
λ =< |α2| > . (10.5)

where α is defined by:

α =
∫
region

ui(·)φi(·)d(·) (10.6)

Exercise: Prove that equations 10.3 to 10.5 result from maximizing the pro-
jection of φ(·) onto ui(·): in a mean square sense. Note that you must rule out
simply making φ as large as possible by dividing by the square root of its projec-
tion on itself, (φi(·), φi(·)); i.e., maximize:∫

region ui(·)φi(·)d(·)[∫
region φi(·)φi(·)d(·)

]1/2 (10.7)

Alternatively, you can maximize (ui(·), φ∗
i (·)) subject to the constraint that (φi(·), φ∗

i (·)) =
1. Either way the result should be equation 10.3.

Equation 10.3 is an integral equation since the unknown function to be solved
for, φi(·), occurs on both sides, only one of them inside the integral. Also note
that the value of λ is itself unknown, and must be determined as a part of the
solution. This appears quite complicated, but luckily for us, integral equations
are well-known to mathematicians who have spent a few hundred years learning
and writing books about them. This particular integral equation is a member
of the family of Fredholm integral equations.3 Usually it does not have a single
solution set φi, λ, but many. In general, the number, nature and character of these
solutions depends on both the nature of the kernel and the type of region over
which the integral is taken.

Thus, finding the very best choice of our special deterministic function, φi(·),
to represent the random velocity field, ui(·), has reduced to finding a solution
to an integral equation for φi(·) in which the kernel is given by the two-point
correlation function, Ri,j(·, ·′). Now this might not have come as a surprise to
you; but if not, you may well be the first person ever for which that is true.

2It only took me about 20 years, but it really is trivial
3Fredhom was a Swedish mathematician of the 19th century.
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The two-point correlation is, of course, itself deterministic since it is obtained
from averages of the velocity field. So all of the information about our particular
solution to the Navier-Stokes equations (our flow of interest) is contained in this
kernel. As we shall see, the big problem in applying equation 10.3 is in finding
out sufficient information about Ri,j(·, ·′) to make the integration possible (if it is
possible at all).

10.3 Fields of Finite Extent

The most familiar application of equation 10.3 is to flows in which the region is of
finite extent in one or more directions (or time), either naturally or because of ar-
tificially imposed boundaries. If the field is of finite total energy, then the classical
Hilbert-Schmidt theory applies. (Another quick trip to the math books might help
here too). According to the Hilbert-Schmidt theory of integral equations, there is
not just a single solution to equation 10.3, but there are denumerably infinitely
many solutions (or eigenfunctions), φ

(n)
i (·), n = 1, 2, · · ·. For each eigenfunction,

there is a corresponding eigenvalue, λn. Moreover, these solutions are orthogonal.
(I sure this brings back lots of fond memories from your math courses, right?) All
this means is that: ∫

region
φ
(p)
i (·)φ(n)

i

∗
(·)d(·) = δpn (10.8)

Now since we have all of these solutions and they are orthogonal, we can
reconstruct the original velocity field from them as:

ui(·) =
∞∑
n=1

anφ
(n)
i (·) (10.9)

The random coefficients an are functions of the variables not used in the integral,
and must be determined by projection back onto the velocity field; ie

an =
∫
region

ui(·)φ∗(n)
i (·)d(·) (10.10)

It is easy to show using the fact that the φ(n)(·) are orthonormal that:

λn =< anam > δmn (10.11)

Thus the random coefficients are uncorrelated.
And, since we can reconstruct the velocity, of course we can reconstruct the

two point Reynolds stress tensor, Ri,j(·, ·′). The result after self-multiplication
and averaging of equation 10.9 is:

Ri,j(·, ·′) =
∞∑
n=1

λnφ
(n)
i (·)φ(n)

j (·′) (10.12)

The eigenvalues are ordered (meaning that the lowest order eigenvalue is bigger
that the next, and so on); i.e, λ1 > λ2 > λ3 · · ·. Thus the representation is optimal
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(or ‘proper’) in the sense that the fewest number of terms is required to capture
the energy. This is VERY important, and frankly it is the only reason any one
cares at all about the POD. It is truly the most efficient way to break-down a field
of finite total energy into pieces, at least from the perspective of the energy.

Thus the POD has provided several insights and possibilities: First, because
of the finite total energy it has produced a denumerably infinite set of orthogonal
functions which optimally (in a mean square sense) describe the flow. This should
make you feel VERY comfortable if you have had an applied math course, since
you know lots of examples of orthogonal functions and can appreciate well what
their advantages are. Don’t be too bothered by the fact that we really don’t know
in general what our particular orthogonal functions are, and may not even be
able to find them analytically. But we do know how to find them numerically
and empirically — if we have enough information about the two point velocity
correlation. We simply put our measured two-point correlation function into the
integral of equation 10.18, and use some appropriate method method to calculate
them. Usually this is by discretizing the integral first, so it becomes a matrix
equation. Then with an appropriate subroutinue, out they pop.

Second a finite subset of these functions can be used to produce a finite number
of equations for analysis. This is accomplished by using them in a Galerkin pro-
jection on the governing equations (in our case the instantaneous Navier-Stokes
equations). By truncating after a specified number of modes, the infinitely dimen-
sional governing equations are reduced to a finite set. We are not going to talk
about this much in this course, but if you are into using the POD for control, or
even if you are carrying out DNS (Direct Numerical Simulations) or LES (Large
Eddy Simulations), you probably will find someone using them, even just to clean
up numerical data. POD (Proper Orthogonal Decomposition) techniques are cur-
rently in vogue to generate appropriate bases for dynamical systems models of
turbulence (v Holmes et al 1996, Glauser et al 1993), but they have been used for
more than 30 years to investigate coherent structures in turbulence (eg Lumley
1967, George 1989b, Moin and Moser 1989).

10.4 Homogeneous Fields

Really interesting things happen to our optimal projection integral, equation 10.3,
if the flow is homogeneous in ~x. Recall that homogeniety means the statistics are
independent of origin. In particular, the two point correlation with separation
~r = ~x′ − ~x reduces to Ri,j(~x, ~x′) = Bi,j(~r). Note that by definition homogeneous
flows are not of finite total energy since they are of infinite extent, so the Hilbert-
Schmidt theory cannot apply to them.

For fields homogeneous in ~x, equation 10.3 can easily be shown to transform
to: ∫ ∫ ∫ ∞

−∞
Bi,j(~r, t)φ̃j(~x+ ~r)d~r = |α2|φ̃i(~x, t) (10.13)

Since the φ(x) on the right hand side is a function of ~x only, it can be included in
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the integral on the left so there is no x-dependence left on the right hand side; ie

∫ ∫ ∫ ∞

−∞
Bi,j(~r, t)

{
φ̃j(~x+ ~r)

φ̃i(~x, t)

}
d~r = |α2| (10.14)

It is immediately obvious that solution itself (the term in brackets) must elim-
inate the x-dependence on the left hand side.

There is really only one function which can accomplish this miracle, the ex-
ponential function. Therefore the eigenfunctions must be of the form φ(~x) ∝
exp[i~k · ~x] where ~k is a wavenumber vector and all values of it are possible; ie

−∞ < ~k < ∞. The coefficients of the exponential, say ûi(~k, t), can be shown to
be given by

ûi(~k, t) =
1

2π

∫ ∫ ∫ ∞

−∞
ui(~x, t)e

−i~k·~xd~x (10.15)

and the velocity field can be reconstructed from them by

ui(~x, t) =
∫ ∫ ∫ ∞

−∞
ûi(~x, t)e

i~k·~xd~k (10.16)

Thus, unlike the finite total energy case considered above, the solutions to
equation 10.3 for homogeneous fields do not need to be empirically determined.
They are ordinary analytical functions and we know what they are; they are the
familiar Fourier transform which depends on the continuous vector variable ~k.
This is indeed a wonderful surprise, mostly because over the past few hundred
years we have learned more about the mathematics of Fourier transforms than
just about any other function. Even though we are dealing with particularly
nasty functions — these functions are not only random, but may not even go
to zero at infinity (since the field is homogeneous) — there is a whole body of
mathematics, the theory of generalized functions, to assure us that we are still
able to proceed.

Exercise: Consider a random field of finite total energy which is a function of
one variable only, say u(r). Now the integral equation of equation 10.18 becomes:∫

R
R(r, r′)φ(r′)dr′ = λφ(r) (10.17)

where the kernel is given by the cross-correlation, R(r, r′) = 〈u(r)u(r′)〉. Imagine
that you only have data for a fixed number of points, say only r, r′ = n∆r. Show
how you can discretize this into a standard matrix eigenvalue problem which can
be solved numerically.

Exercise: Now consider the same problem as above, but this time show how
you might develop a solution by successive approximations, where you guess a
solution, substitute it into the left-hand side and integrate to obtain the right
hand side. Then use the new right-hand side to substitute into the the left-hand
side again, etc. etc. For a simple example, let R(r, r′) = exp[−A(r + r′)].
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10.5 Are Homogeneous Fields and Periodic Fields

the Same?

Contrary to popular assumption (especially in the DNS and LES communities),
these are not the same thing. The velocity field is said to be periodic in the
variable x if u(x) = u(x + L) where L is the period and the dependence on the
other variables has been suppressed for now, as has the fact that the field is a
vector. Homogeniety, on the other hand, means the statistics are independent of
origin. If a flow is homogeneous in a single variable, say x, then the two point
correlation with separations in x reduces to R(x, x′) = R̃(r) where r = x′ − x is
the separation. By definition, homogeneous flows are not of finite total energy
since they are of infinite extent, so the Hilbert-Schmidt theory cannot apply to
them. By oontrast, periodic fields are of finite total energy only if a single period
is considered, since otherwise they repeat to infinity.

Now if periodicity and homogeniety are so different, why does the confusion
arise? The POD provides the answer. For fields homogeneous in x, equation 10.3
can be shown to transform to∫ ∞

−∞
R̃(r)φ̃(x+ r)dr = λ̃φ̃(x) (10.18)

Since the φ(x) on the right hand side is a function of x only, it can be included
in the integral on the left. Since there is now no x-dependence left on the right
hand side, it is immediately obvious that solution itself must eliminate the x-
dependence on the left hand side. Therefore the eigenfunctions must be of the
form ˜φ(x) ∼ exp (ikx) where k is a wavenumber and all values of k are possible;
ie −∞ < k < ∞. The coefficients, û(k), can be shown to be given by

û(k) =
1

2π

∫ ∞

−∞
u(x)e−ikxdx (10.19)

and the velocity field can be reconstructed from them by

u(x) =
∫ ∞

−∞
û(k)eikxdk (10.20)

Thus, as noted earlier, the optimized projection integral for homogeneous fields re-
duces to the familiar Fourier transform which depends on the continuous variable
k, so the number of eigenfunctions is non-denumerable.

The situation for periodic fields is almost the same, but not quite — and that
little difference is at the root of the confusion. Any periodic field, even a random
one, can be represented by a Fourier series; ie

u(x) =
∞∑

n=−∞
ane

i2πnx/L (10.21)
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where the an are random and are determined in the usual manner. Using the
orthogonality, the two-point correlation function can be written as

R(x, x′) =
∞∑

n=−∞
< |an|2 > ei2πn(x

′−x)/L (10.22)

Thus the two-point correlation for periodic flows, like homogeneous flows, de-
pends only on the difference variable r = x′ − x. Hence the eigenvalue problem
of the POD reduces to exactly the form of equation 10.18, except now the lim-
its of integration are (L/2,−L/2). It is easy to see that the POD modes must
also be harmonic functions, like those for homogeneous flows. But there is a
very important diffence which is obvious from the integral: for periodic flows
the wavenumber must be given by k = 2πn/L and n can only take integer values!
Moreover, the number of POD modes is now denumerably infinite instead of being
non-denumerable (ie continuous in k). Therefore the POD modes and the Fourier
modes are identical. Thus the use of Fourier series to represent periodic fields is
indeed optimal, at least in a mean square sense.

Now the relation between a boxed homogeneous field and a periodic field can
be readily determined by noting that because the energy is made finite by the box,
the Hilbert-Schmidt theory again applies; hence the number of eigenfunctions be-
comes denumerable. If the kernel of boxed field is now in addition assumed to
be periodic, the Fourier series representation above follows immediately. Thus
the periodic fields usually assumed for calculation are dynamically equivalent to
a boxed homogeneous field with the additional assumption of periodicity of the
instantaneous fields. The assumption of periodicity has not only made the eigen-
functions denumerable, but it has forced the phase relations of all the scales, and
this must also be of particular concern for the largest ones.

Such calculations of bounded fields, like their experimental counterparts, can
only be representative of homogeneous fields for scales of motion much smaller
than the computational box (or lowest wavenumber) and for limited times. Whether
current computations are acceptable is open to debate. My own view is that the
best test of whether the field is a good model of a truly homogeneous flow is best
measured by its departures (or lack of them) from similarity theory. We will talk
about this in detail in the next chapter, but recognize that the whole subject is
being debated right now, sometimes rather hotly. Who knows, you might be lucky
enough find yourself in the middle of this debate quite soon.

10.6 Inhomogeneous fields of Infinite Extent

None of the approaches above applies to flows which are inhomogeneous, but
of infinite extent (like most shear flows in the streamwise direction). In fact,
it has not been at all clear until recently whether the integral of equation 10.3
even exists in such cases. All attempts to-date to apply the POD to the flow
in these inhomogeneous directions have ended up applying the Hilbert-Schmidt
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theory to artificially truncated, finite regions of the flow. And as a result, the
eigenfunctions and eigenvalues found are dependent on the particular domain
included in the decomposition. Clearly this is because it is the finite domain itself
which is making the energy finite.

Recently, however, one of my Ph.d. students, Dan Ewing 1995 (see also Ewing
and George 1995) was able to show that if similarity solutions of the two-point
Reynolds stress equations were possible, then the POD could be applied in simi-
larity coordinates and the eigenfunctions were harmonic functions in it. By using
a logarithmic coordinate transformation he was able to identify a number of flows
for which two-point similarity was possible, thus for these flows the eigenfunctions
are known analytically. Most importantly, the eigenfunctions were independent
of the domain, at least in principle. For the far axisymmetric jet, the appropriate
modes were

u(κ, x) ∼ x−1 exp(−iκξ) (10.23)

where
ξ ≡ lnx/Lo (10.24)

and Lo is prescribed by the initial conditions.4 Thus two-point similarity and
equation 10.3 have yielded an optimal set of eigenfunctions into which the flow
can be decomposed. The two point correlations, Rij(x, x

′) =< ui(x)uj(x
′) >,

could all be expressed in the form,

Rij(x, x
′) = Q(x, x′)exp[iκ(ξ′ − ξ)] = Q(x, x′)exp[iκ lnx′/x] (10.25)

where Q(x, x′) = Us(x)Us(x
′)dδ/dx and for this flow Us(x) ∼ 1/x and dδ(x)/dx =

constant. Note the dependence of the correlation in similarity variables on ξ′− ξ,
an obvious counterpart to the x′ − x dependence of homogeneous flows.

Now these functional forms are interesting for a couple of reasons. First,
because they settle the question of whether equation 10.3 can be applied to a
flow of infinite extent that is not homogeneous: It can! Second, for similarity
flows of infinite extent, the optimal basis functions are analytical functions, and
they are harmonic functions in the similarity variable ξ = ln x/Lo. Third, there
is a continuum of eigenfunctions since all values of the reduced wavenumber, κ,
are possible; ie −∞ < κ < ∞. This last fact is the most interesting of all
since it represents the counterpart of the homogeneous analysis above. Hence the
denumerable POD modes of the Hilbert- Schmidt theory for an inhomogeneous
finite energy flow have given way to the non-denumerable modes of Ewing. Thus,
once again, the POD suggests that confining a flow changes the fundamental
nature of it, consistent with observation.

There is at least one more interesting aspect of the these inhomogeneous eigen-
functions. It is easy to show by expanding the logarithm of equation 10.25 that the

4Interestingly, no length scale can be formed for a point source jet from the two parameters
available, the kinematic viscosity and the rate at which momentum is added per unit mass.
Hence Lo must depend on ‘finite’ source effects, like perhaps (B2

o/Mo)
1/2 where Bo is the rate

of mass addition per unit mass (v George 1989a).
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limiting forms of at least these inhomogeneous eigenfunctions are ordinary Fourier
modes. From its Taylor expansion about x = x′, lnx′/x = (x′ − x)/x + · · ·. It
follows for small values of (x′ − x)/x that Rij ∼ exp [ik(x′ − x] where k is the
ordinary, but local, wavenumber defined by k = κx. Thus the usual assumptions
of local homogeniety and the use of spectral analysis for the small scale motions
are justified, at least in this case. Whether this is a general property of the POD
is still very much the subject of debate (cf Holmes et al 1996).



Bibliography

[1] Ewing D (1995) On Multi-point Simlarity Solutions in Turbulent Free-
Shear Flows. PhD diss., Dept Mech Engr, SUNY/Buffalo, Buffalo, NY.a

[2] Ewing D and George WK (1995) Similarity Analysis of the Two-Point
Velocity Correlation Tensor in the Turbulent Axisymmetry Jet. Turbu-
lence, Heat and Mass Transfer, Lisbon 1994 (Hanjalic and Pereira, eds.),
Begell House Inc., NY, 49 – 56.

[3] Holmes P, Lumley JL and Berkooz G (1996) Turbulence, Coherent Struc-
tures, Dynamical Systems and Symmetry CUP, Cambridge, UK.

[4] George WK (1989b) Insight into the Dynamics of Coherent Structures
from a Proper Orthogonal Decomposition. in Zorin Zaric Symp on Near-
wall Turbulence, Dubrovnik, Yug (S.Kline ed), Hemisphere, NY.

[5] Lumley JL (1967) The Structure of Inhomogeneous Turbulent Flows. in
Atm Turb and Radio Wave Propag, Nauka, Moscow.

197



198 BIBLIOGRAPHY



Chapter 11

Decomposing Homogeneous
Turbulence

Homogeneous turbulence provides us the only opportunity to study turbulence
in the absence of turbulence transport and even more important, the absence of
boundary conditions. Our study is facilitated by the results of section 10.4 which
showed that homogenous turbulence is optimally decomposed into functions of
exponential type. Thus the most natural way to analyze homogeneous flows is
to use Fourier analysis. But because homogeneous flows are of necessity of in-
finite extent, clearly Fourier integrals in the ordinary sense will not work since
the integrals involving instantaneous quantities will not converge. Clearly we will
need to generalize the usual definitions in order to make them useful. The classic
texts have mostly approached this problem by using so-called Fourier-Stieljes in-
tegration, which can be quite forbidding to the new student to the subject (and
many older students as well). Fortunately there is another much simpler way to
approach the subject using generalized functions. (Note that the reader who is
unfamiliar with this subject might first want to study the appendices C, E, and
F, which deal with temporal Fourier analysis only without the complications of a
vector argument.)

11.1 Generalized functions

For homogeneous flows, we found that the appropriate choices of eigenfunctions to
solve equation 10.3 were exponential functions. The coefficients of these complex
exponential eigenfunctions, say ûi(~k, t), were given by:

ûi(~k, t) =
1

(2π)3

∫ ∫ ∫ ∞

−∞
ui(~x, t)e

−i~k·~xd~x, (11.1)

and the velocity field can be reconstructed from them by:

ui(~x, t) =
∫ ∫ ∫ ∞

−∞
ûi(~k, t)e

i~k·~xd~k (11.2)

199
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Now if you have studied Fourier transforms in an applied math course, you have
probably already spotted one potential problem: the integrals of equations E.1 and
E.2 may not even exist — at least in the ordinary sense. A truly homogeneous field
has no spatial bounds and must be truly infinite. Moreover, since its statistical
properties are independent of origin, the velocity fluctuations simply go on forever.
Thus our random velocity field is really rather nasty, mathematically speaking,
and most certainly the integrals in the ordinary sense become unbounded.

So we have a dilemma. Our attempt to find the optimal way to decompose this
flow has led us to Fourier transforms, but they do not seem to apply to the very
problem which gave rise to them — turbulence which is homogeneous. The answer
lies in a major mathematical development of the 20th century — the theory of
generalized functions.

There are numerous references which one can consult for a more proper math-
ematical treatment than the rather cursory and intuitive treatment here. (Lumley
1970, Lighthill 1955 are two of my favorites). In brief the basic idea is to replace
functions whose integrals do not converge, with functions which do. Great idea,
I’m sure you are thinking, but doesn’t this require magic? In truth it is almost
magic, since in the end we almost never worry about what we have done, and
almost always just go on doing regular mathematics like nothing ever happened.
Impossible, you say. Let’s consider a simple example in one dimension.

Suppose I want to take the integral of the function, f(x) = 1, from (−∞,∞).
Obviously this integral does not exist. Nor, in fact does its Fourier transform exist
(in the ordinary sense).

Now consider a second function, say:

gL(x) = e−x2/2L2

(11.3)

Now since the tails of this function roll-off exponentially, it certainly is integral-
able; in particular, ∫ ∞

−∞
e−x2/2L2

dx =
√
2πL (11.4)

(You know this from Chapter 2, since (1/
√
2πL)exp(−x2/(2L2) is exactly the

Gaussian which integrates to unity.)
Our integrable function gL(x) also has a wonderful Fourier transform, wonder-

ful in the sense that not only does it exist, all its derivatives exist also; i.e.,

FT{e−x2/2L2} =
1

2π

∫ ∞

−∞
e−ikxe−x2/2L2

dx =
√
2πLe−k2L2/2 (11.5)

This is easy to compute by completing the square.
So we have one nasty function, f(x) = 1, and one wonderful function, gL(x);

the former has no integral, and hence no transform (in the ordinary sense), but
the latter has both. Now note something interesting. The limit of gL(x) → 1 as
L → ∞, which is exactly the value of our nasty function, f(x). In fact, we could
just define a new function by the product fL(x) = f(x)gL(x) and note that:
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lim
L→∞

fL(x) = lim
L→∞

f(x)gL(x) = f(x) (11.6)

In fact, even more interestingly, the Fourier transform of our new function, fL(x),
also exists in the ordinary sense. In this case, it’s just the Fourier transform of
gL itself.

Here is where one of the really good ideas of the last century appears1, the
magic if you will. Let’s just define the Fourier transform of our nasty function,
f(x), in the sense of generalized functions to simply be the limit of the
Fourier transform of fL(x) as L → ∞; i.e,

FTgf{f(x)} = lim
L→∞

FT{fL(x)} = lim
L→∞

1

2π

∫ ∞

−∞
e−ikxf(x)gL(x)dx (11.7)

The Fourier transform of 1 in the sense of generalized functions is so useful,
we have given it a special name, the ‘delta-function’; i.e.,

δ(y) ≡ lim
L→∞

GL(y) (11.8)

where GL(y) can be any function whose integral is unity and which becomes
undefined at y = 0 and zero everywhere else in the limit as L → ∞.

I’m sure you have seen δ before, but you may not have realized that it was
a generalized function. In general, the generalized functions are not uniquely
defined. For example, all the functions below are suitable for defining δ(y):

GL(y) =
1√
2π

e−y2/2L2

(11.9)

G2L(y) = e−‖y|/L (11.10)

G3L(y) =
sin(πy/L)

πy/L
(11.11)

The first and last have continuous derivative everywhere, the second has a singu-
larity at the origin. When working with Fourier transforms, it is generally best to
define them in terms of functions which both go to zero exponentially fast, and
which have all derivatives continuous. There is nothing in this course which needs
anything more than GL(y), the Gaussian version, or

√
2πL times it.

We can generalize this whole procedure to almost any arbitrary function,
whether deterministic or random. For example, suppose we have a random ho-
mogenous function (in one variable), say v(x). Then we can define its Fourier
transform in the sense of generalized functions to be:

1One of the first to see this was the electrical engineer named Heaviside — and he invented
the step function which bears his name.
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v̂(k) ≡ FTgf{v(x)} = lim
L→∞

FT{v(x)gL(x)} (11.12)

= lim
L→∞

1

2π

∫ ∞

−∞
e−ikxv(x)gL(x)dx (11.13)

where gL(x) can be any function for which the product v(x)gL(x) is integrable
and for which:

lim
L→∞

v(x)gL(x) = v(x) (11.14)

Obviously a suitable choice is the Gaussian function we started off with; i.e.,

gL(x) = e−x2/2L2

(11.15)

Exercise: Show that the Fourier transforms in the sense of generalized func-
tions of eikxo , coskxo and sinkxo are δ(xo), [δ(xo) + δ(−xo)]/2 and i[δ(xo) +
δ(−xo)]/2 respectively using the Gaussian version of gL(x) defined above.

Exercise: Compute the inverse transforms from the above example. Do NOT
use the short-cut version where you assume the properties of a delta-function, but
instead work with the actual transformed version of f(x)gL(x) under the limit
sign, then take the limits.

For the rest of this course, we will simply agree that whenever there is any
doubt, we always mean the Fourier transform in the sense of generalized functions.
For example, when we take the three dimensional spatial Fourier transform of
the velocity field, ui(~x, t), we really mean the Fourier transform in the sense of
generalized functions defined by:

ûi(~k, t) ≡ FTgf{ui(~x, t)} (11.16)

= lim
L→∞

1

(2π)3

∫ ∫ ∫ ∞

−∞
e−i~k·~x[ui(~x, t)gL3(~x)]d~x (11.17)

where gL3(~x) is some suitably defined function which makes the integral exist. An
excellent choice for gL3(~x) would be:

gL3(~x) = e−[x2
1+x2

2+x2
3]/2L

2

(11.18)

whose Fourier transform (in the ordinary sense) is given by:

GL3(~k) =
L3

(2π)3/2
e−[k21+k22+k23 ]L

2/2 (11.19)

We will use exactly this definition in Section 11.23 to show that Fourier coefficients
in non-overlapping wavenumber bands are uncorrelated.
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Exercise: Find the Fourier transform of 1 in three-dimensions using gener-
alized functions, then show how you might represented it symbolically as a three
dimensional delta-function, δ(~k).

Exercise: If the Fourier transform can be represented in the sense of gener-
alized functions as δ(|~k − ~ko|), find the inverse Fourier transform in the sense of
generalized functions.

11.2 Fourier transforms of homogeneous turbu-

lence

We have agreed already that we will always, when necessary, interpret our Fourier
transforms in the sense of generalized functions. So if we agree to only transform
over the space variables, we are left with the following Fourier transform vector
pair:

ûi(~k, t) =
1

(2π)3

∫ ∞

−∞
d~x e−i~k·~x ui(~x, t) (11.20)

ui(~x) =
∫ ∞

−∞
d~k e+i~k·~x ûi(~k, t) (11.21)

Note that we have represented a triple integral by a single integral sign and moved
the differential, d~x or d~k, next to the integral sign, so it will be obvious which
variables are being integrated. Also it is understood that everything to the right
of the differential is to be integrated over those variables.

There is still one little problem. We set out to find one deterministic vector
function which best described our random field, and we have ended up finding
not just an infinity of them (like for the inhomogeneous fields above), but in
fact a continuum of them: the number of eigenfunctions is non-denumerable. As
inconvenient as this might appear, that is the way things are. It is an inescapable
consequence of the fact that we let the boundaries (and the energy) in the field go
to infinity. But who cares, it is a small price to pay since we have this wonderful
Fourier analysis tool to work with.

Now I’m sure you are asking: What is he so excited about? Why is the
applicability of Fourier analysis such a BIG THING? There are two big reasons
(among many). The first has to do with what happens when you take the inverse
transform of equation F.9 at the point ~x′, multiply it by the complex conjugate
of the inverse transform at point ~x, and average to get the two-point correlation,
Ri,j; i.e.,

Ri,j(~x′, ~x, t) = 〈ui(~x, t)uj(~x
′, t)〉 (11.22)

=
∫ ∞

−∞
d~k′

∫ ∞

−∞
d~k e+i(k′mx′

m−kpxp)〈ûi(~k′, t)û∗
j(
~k, t)〉
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But we have assumed the field to be homogeneous so the two-point correlation
can depend at most on the vector separation, ~r = ~x′ − ~x; i.e.,

Ri,j(~x′, ~x, t) = Bi,j(~r, t) (11.23)

Therefore equation F.3 is simply:

Bi,j(~r, t) =
∫ ∞

−∞
d~k′

∫ ∞

−∞
d~k e+i(k′mx′

m−kpxp)〈ûi(~k′, t)û∗
j(
~k, t)〉 (11.24)

and the left-hand side has no separate dependence on either ~x or ~x′ separately,
but is only a function of ~r. Now look carefully at the right-hand side. Clearly,
unless a miracle occurs in the integration, the right-hand side is going to always
depend on ~x′ and ~x.

Guess what? You probably guessed it. A miracle DOES occur — well, not
really a miracle, but even better than a ‘miracle’. This ‘miracle’ can be proven
to be true. The ‘miracle’ is that since both sides of equation F.3 MUST depend
only on ~r = ~x′ − ~x, it follows immediately that the Fourier components in non-
overlapping wavenumber bands must be uncorrelated.

Say what, you say? Exactly this:

〈ûi(~k′, t)û∗
j(
~k, t)〉d~k′d~k =

{
Fi,j(~k, t)d~k , ~k′ = ~k

0 , ~k′ 6= ~k
(11.25)

or equivalently:
〈ûi(~k′, t)û∗

j(
~k, t)〉 = Fi,j(~k, t)δ(~k′ − ~k) (11.26)

where δ( ) is the familiar delta-function (not to be confused with the Kronecker

delta tensor) and Fi,j(~k, t) is a deterministic function called the velocity cross-
spectrum tensor.

It is easy to see by substitution that our two-point velocity correlation function
is the three-dimensional inverse Fourier transform (in the ordinary sense) of the
velocity cross-spectrum tensor; i.e.,

Bi,j(~r, t) =
∫ ∫ ∫ ∞

−∞
eikmrmFi,j(~k, t)d~k (11.27)

It is a bit more difficult to show that the cross-spectrum is the three-dimensional
Fourier transform (in the ordinary sense) of the two-point velocity correlation
function; i.e.,

Fi,j(~k, t) =
1

(2π)3

∫ ∫ ∫ ∞

−∞
e−ikmrmBi,j(~r, t)d~r (11.28)

Thus the cross-spectrum and the two-point correlation form a Fourier transform
pair.

Exercise: Use the definition of gL(x) in the preceding chapter and prove that
〈û(k)û∗(k′)〉 = F (k)δ(k′ − k) if u(x) is a homogeneous random variable and û(k)
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is defined in the sense of generalized functions by:

û(k) =
1

2π

∫ ∞

∞
dx e−ikxu(x) (11.29)

Exercise: Carry out the same exercise and derive equation F.8 using gL3(~x)
as defined in the preceding chapter.

The implications of what we have accomplished become immediately obvious
if we evaluate the inverse transform of equation F.9 at ~r = 0 to regain the single-
point cross-correlation; i.e.,

Bi,j(0, t) =
∫ ∞

−∞
d~k Fi,j(~k, t) (11.30)

Clearly Fi.j(~k, t) is telling us how the single-point Reynolds stress, 〈uiuj〉 =
Bi,j(0, t), is distributed over the various wavenumbers (or scales of the turbulence).

This is even more obvious if we contract the two indices by letting i = j, sum
and divide by two to get the energy; i.e.,

1

2
〈q2〉 = 1

2
Bi,i(0, t) =

1

2

∫ ∞

−∞
d~k Fi,i(~k, t) (11.31)

The contracted cross-spectrum is usually called simply the energy spectrum, and
it tells us exactly how the turbulence energy is distributed with wavenumber.
But this is almost what we wanted in the first place — a way to tell the energy
associated with one scale from the energy associated with another.

11.3 The Three-dimensional Energy Spectrum

Function

Now it really is a nuisance to have to deal with the energy spectrum, Fi,i(~k, t),
defined above. Even though it is a scalar, it is still a function of four independent
variables, ~k and t. This is, of course, a lot less nuisance than the full cross-
spectrum tensor, Fi,j(~k, t)). Nonetheless, it is still rather difficult to draw pictures
of things that depend on even three-variables, much less show their time depen-
dence. So theoreticians have defined another kind of spectrum, E(k, t) which is

defined as the integral of Fi,i(~k, t) over spherical shells of radius k ≡ |~k|; i.e.,

E(k, t) ≡ 1

2

∮
k=|~k|

dS(k) Fi,i(~k, t) (11.32)

where
∮
means a surface integral and dS(k) is a spherical area element. This has

the advantage of having only the scalar argument, k, defined by:

k2 = k2
1 + k2

2 + k2
3 (11.33)
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This new kind of spectrum is properly called the three-dimensional spectrum
function (to distinguish it from the contracted cross-spectrum we used above).
But most people simply refer to it as just the spectrum or the energy spectrum,
which is fine as long as there is no confusion. (Be careful in skipping from book
to book and paper to paper since some books do not include the factor of 1/2 in
the definition.) Most of the time the surface integral of equation 11.32 is carried
out in spherical coordinates, (k, θ, φ), so equation 11.32 becomes:

E(k, t) =
∫ 2π

θ=0

∫ π/2

φ=−π/2
Fi,i(~k, t)k

2sinφdφdθ (11.34)

where Fi,i(~k, t) must, of course, be written in spherical coordinates too. This has
particular advantages for isotropic flow, as will be seen later.

It is easy to see that the integral of E(k, t) over all wavenumbers yields the
turbulence kinetic energy (per unit mass); i.e.,

1

2
〈uiui〉 =

∫ ∞

k=0
E(k, t)dk (11.35)

This follows immediately from the fact that the integral of Fi,i(~k, t)/2 over all
wavenumbers yields the kinetic energy (per unit mass) and the fact that we have
already integrated over two of the variables in the definition of E(k, t). This is, of
course, the reason why most people simply refer to E(k, t) as the energy spectrum.
Unfortunately there are a lot of other definitions of spectra which integrate to the
energy which will shall learn about below, so be sure both you and the person you
are talking to agree on your definitions.

Figure 13.1 shows an example of the energy spectrum function determined from
an attempt using DNS to simulate isotropic turbulence in a computer. Figure ??
shows the energy spectrum function inferred from grid turbulence measurements
of one-dimensional spectra (see below) at different positions downstream in a wind
tunnel assuming isotropy (as described in a the next chapter).

The problem with E(k, t) is that it is not simply related to the correlation
functions, unless you are willing to make other assumptions like isotropy. This is
because the value of E(k, t) at a given wavenumber really has information from all
three spectral components in it, so information as been smeared out, or averaged.
But this is not ‘averaging’ in the sense that we have been using it — at least not
without other hypotheses as noted below. It is really only exactly what it says it
is: an integration of the energy spectrum over a surface of radius k.

11.4 DNS turbulence

In fact, researchers who do DNS with spectral codes take this ‘average’ over spher-
ical shells of radius k quite literally and use it to their advantage in a very in-
teresting manner. Since even a modest simulation of decaying turbulence takes
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Figure 11.1: DNS data of Wray [?] for decaying isotropic turbulence showing how
E(k, t) decays with time. Note limited resolution at low wavenumbers.
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hundreds of processor hours, it costs far too much to do more than a few runs.
This means it is impossible to ever have enough data to do ensemble averages.
One way to beat this problem is to compute so-called ‘forced turbulence’, in which
the turbulence is forced continuously so the energy input exactly balances the dis-
sipation rate. Such turbulence is then stationary, so the usual time averages can
be performed.

Unfortunately, many interesting flows, like decaying turbulence or homoge-
neous shear flow turbulence, are not stationary. So what the DNS people do is
to pick the starting spectrum, E(k, 0), then take the amplitude of their Fourier
coefficients equal to the square root, so that the starting Fourier components are:

ûi(~k, 0) =

∣∣∣∣∣E(k, 0)

(∆k)3

∣∣∣∣∣
1/2

eiα(k) (11.36)

where α(k) is initial phase and ∆k is the resolution between the selected wavenum-
bers. (You will understand this better after we consider finite domain transforms
in the next chapter, but for now simply think of 1/∆k3 as an approximations

to the delta function δ(~k′ − ~k) we encountered above.) They then use a random
number generator to randomize the phases at each value of k. (Note that it is also
important to make sure these initial values satisfy the incompressible continuity
equation, which transformed becomes simply kiûi = 0.) Once the calculation
begins, the Fourier-transformed Navier-Stokes equations govern the evolution of
both the amplitudes and the phases.

It is easy to see why these particular DNS techniques are still somewhat con-
troversial, even after twenty years. You are working with only a single member
of an ensemble, and a very special one at that. And you are interpreting the
integration over the spherical shells of radius k as an average in the ensemble
sense. Now this is really a very clever trick that makes the computations possible.
But it assumes the turbulence evolves to a state independent of its initial condi-
tions, consistent with the long held view about turbulence. Unfortunately even
computations done in this way suggest quite strongly that the decay rate of the
turbulence energy depends on how you begin; i.e., on the initial conditions. This
is a very serious problem indeed, unless the only conditions that matter are the
shape of the starting spectrum.

At this moment, most people believe (some vehemently) in the asymptotic
independence, which is the traditional view of turbulence. I am of the opposite
point of view, but suspect strongly that all the necessary information about the
initial conditions is in the starting spectrum. You will have a chance to judge
for yourself whose views are more reasonable from the examples in the following
chapters. In spite of those who would like to pretend there is no problem, the next
decade may prove very interesting as computers get more powerful and tougher
questions are asked of the simulations. And who knows, maybe you will be among
those who will provide the answers to questions that many now are afraid to ask.
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11.5 One-dimensional spectra

There is another type of spectrum, the so-called one-dimensional spectrum, we
need to consider before we press on to the applications. In truth, for the theory
we really don’t need this now; but I know you will all be thinking about how what
we talk about relates to things we can measure, right? So we might as well put
all the cards on the table at once.

The first thing you need to know is that NONE of the spectra we talked about
above can actually be measured in a turbulent flow — or least haven’t yet. Think
about what would be required. You would have to make two-point correlation
measurements of all three components of velocity in all three directions, then
Fourier transform them in all three directions. And you would have to have
enough of such measurements to satisfy statistical convergence criteria, and over
a large enough spatial extent to not have a window problem, and with enough
resolution to not alias — well you get the idea. The last two problems are tractable
in most cases if special care is taken, but it’s the three components of velocity
with separations in three directions that is the killer (at least for now — maybe
when holographic PIV techniques finally mature).

Now you might conclude from the above that spectral analysis is impossible.
Not quite. If we can’t do exactly what we want, we invent something else. It
turns out that for turbulent flows in which there is a substantial mean velocity,
say ~U = (U1, 0, 0) and |U1| is a lot bigger than the rms turbulence velocity, the
result of our measurement of a frequency spectrum with a fixed probe, is pretty
close to the one-dimensional wavenumber spectrum defined by:

F
(1)
i,j (k1) ≡

∫ ∫ ∞

−∞
Fi,j(~k, t)dk2dk3 (11.37)

In other words, the one-dimensional cross-spectrum is just the original cross-
spectrum with two of the wavenumber directions integrated out. The superscript
‘1’ is necessary to name the function so we can tell it apart from the original.
(Remember: you can’t name a function by its argument.) The superscript could
be 1, 2, or 3, and is determined by the one variable that is NOT integrated
out. The way this happens is that the fluctuations we see at a frequency f are
mostly due to spatial disturbances of wavelength λ = U1/f being convected past
us. Thus what shows up at frequency f is really a disturbance at wavenumber
k1 = 2πf/U1. Really it is all the same as simply saying that ∂/∂t ≈ U1∂/∂x1.
This interpretation is called “Taylor’s Hypothesis” and works pretty well as long as
the local turbulence intensity is less than 10 – 20%. Above this the interpretation
becomes very difficult.

Now one-dimensional spectra have some very funny and strange characteristics,
which really drive non-turbulence people crazy. The most annoying feature is that
they always end up with a finite value of the spectrum at zero wavenumber. This
can be very misleading, since in fact there is no energy at zero wavenumber — ever!
It has simply been aliased there by waves traveling sideways. This is illustrated
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in Figure ?? which shows a probe traveling through a field of fixed waves, all of
wavelength λo = 2π/ko, but with their wavefronts aligned in different directions.
Only those with wavefronts exactly perpendicular to the direction of travel of the
probe get “measured” at the right wavenumber, ko. All the rest are “seen” at
ko cos β where β is the angle of incidence.

Example: Consider a turbulent field to have all its energy concentrated on one
shell at wavenumber, |~k| = ko. This can be represented as Fi,i(~k) = Foδ(|~k| − ko).

Apply the definition of equation 11.37 to show that F
(1)
i,i = Fo[1 − k2/k2

o ]. Note

that all of the energy in the field is at |~k| = ko, there is none at ko (or above) in
the one-dimensional spectrum.

The one-dimensional spectrum does have several nice features, however. The
first is that each one-dimensional spectrum is the one-dimensional Fourier trans-
form of the corresponding two point correlation functions, Bi,j(r, 0, 0), Bi,j(0, r, 0),
and Bi,j(0, 0, r); i.e.,

F
(1)
i,j (k) =

1

2π

∫ ∞

−∞
e−ikrBi,j(r, 0, 0)dr (11.38)

F
(2)
i,j (k) =

1

2π

∫ ∞

−∞
e−ikrBi,j(0, r, 0)dr (11.39)

F
(3)
i,j (k) =

1

2π

∫ ∞

−∞
e−ikrBi,j(0, 0, r)dr (11.40)

And in fact, these correlations can be shown to be the inverse Fourier transforms
of the one-dimensional spectra; i.e.,

Bi,j(r, 0, 0) =
∫ ∞

−∞
e+ikrF

(1)
i,j (k)dk (11.41)

Bi,j(0, r, 0) =
∫ ∞

−∞
e+ikrF

(2)
i,j (k)dk (11.42)

Bi,j(0, 0, r) =
∫ ∞

−∞
e+ikrF

(3)
i,j (k)dk (11.43)

Thus like there three-dimensional counterparts, they form a Fourier transform
pair.

Proof of equation 11.39 Start with equation F.9 and set ~r = (r, 0, 0) to
obtain:

Bi,j(r, 0, 0) =
∫ ∫ ∫ ∞

−∞
eik1rFi,j(~k, t)d~k

=
∫ ∞

−∞
dk1e

ik1r
[∫ ∫ ∞

−∞
Fi,j(~k, t)dk2dk3

]
(11.44)

But the term in brackets is just F
(1)
i,j (k1).
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Proof of equation 11.39 Start with the definition of equation F.10 and
substitute from equation F.9 to obtain:

F
(1)
i,j (k1) =

∫ ∫ ∞

−∞
Fi,j(~k, t)dk2dk3

=
∫ ∫ ∞

−∞

[
1

(2π)3

∫ ∫ ∫ ∞

−∞
e−ikmrmBi,j(~r, t)d~r

]
dk2dk3 (11.45)

=
1

(2π)

∫ ∞

−∞
dr1e

−ik1r1

{∫ ∫ ∞

−∞
dr2dr3Bi,j(~r, t)δ(r2)δ(r3)

}

where the delta-functions result from the following double Fourier transform in
the sense of generalized functions of 1; i.e.,

1

(2π)2

∫ ∫ ∞

−∞
e−ik2r2−k3r3 1 dk2dk3 = δ(r2)δ(r3) (11.46)

Integration over r2 and r3 yields immediately equation 11.39.

An interesting feature of the one-dimensional spectrum is that its value at the
origin (k = 0) is proportional to an integral scale. For example, to obtain the

longitudinal integral scale you would obtain from the two-point correlation, B
(1)
1,1 ,

start with the corresponding one-dimensional spectrum. F
(1)
1,1 and set k = 0 to

obtain:

F
(1)
1,1 (0) =

1

π

∫ ∞

0
B1,1(r, 0, 0)dr

=
〈u2

1〉L
(1)
1,1

π
(11.47)

where we have used the symmetry of B1,1(r, 0, 0) about r = 0. In fact, this is
usually the best way to determine an integral scale, since you can use Fast Fourier
Transform algorithms to speed up the computations (as shown in the appendices)
and completely by-pass the computation of the correlation all together.

11.6 Spectral symmetries

The symmetries encountered in Section 9.4 all have their counterpart in spectral
space. The Fourier representation, however, is generally complex; so what might
be simply a symmetry about the origin shows up as a Hermitian property in the
cross-spectrum.

For example, consider the cross spectrum which is the three-dimensional Fourier
transform of the cross-correlation Bi,j(~r) and given by:

Fi,j(~k) =
1

(2π)3

∫ ∫ ∫ ∞

−∞
e−ikmrmBi,j(~r)d~r
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=
1

(2π)3

∫ ∫ ∫ ∞

−∞
e−ikmrmBj,i(−~r)d~r

=
1

(2π)3

∫ ∫ ∫ ∞

−∞
e+ikmrmBj,i(~r)d~r

= F ∗
j,i(

~k) (11.48)

since Bi,j is real.
But also it follows that:

Fi,j(−~k) =
1

(2π)3

∫ ∫ ∫ ∞

−∞
e−ikmrmBi,j(~r)d~r

=
1

(2π)3

∫ ∫ ∫ ∞

−∞
e+ikmrmBi,j(~r)d~r

= F ∗
i,j(

~k) (11.49)

This last property is called Hermitian and corresponds to symmetry of the cross-
spectra.

11.7 Consequences of incompressibility

In section 9.5 we explored the consequences of the incompressible continuity equa-
tion on the two-point correlation tensor. To see the counterparts for Fourier anal-
ysis, consider first the continuity equation for just the instantaneous fluctuating
velocity given by ∂uj/∂xj = 0. Fourier transforming this in the sense of general-
ized functions yields:

1

(2π)3

∫ ∫ ∫ ∞

−∞
e−ikmxm

[
∂uj(~x, t)

∂xj

]
d~x = 0 (11.50)

This can be integrated by parts to obtain:

1

(2π)3

∫ ∫ ∫ ∞

−∞
e−ikmxm

[
∂uj(~x, t)

∂xj

]
d~x = [−ikj]

1

(2π)3

∫ ∫ ∫ ∞

−∞
e−ikmxmuj(~x, t)d~x

= [−ikj]û(~k, t) (11.51)

Thus the counterpart to the instantaneous continuity equation in Fourier space
is:

[−ikj]ûj(~k, t) = 0 (11.52)

Equations 9.43 and 9.44 can be Fourier transformed in a similar manner to
obtain their counterparts in spectral space as:

kjFi,j(~k) = 0 (11.53)

kiFi,j(~k) = 0 (11.54)

Exercise Prove these.
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11.8 Implications of Isotropy on Spectra

By direct analogy with the two-point correlations it follows that the most general
forms of the two-point cross-spectral spectra in an isotropic field are given by:

Fθ,θ(~k) = Fθ(k) (scalar) (11.55)

Fi,θ(~k) = FθL(k)
ki
k

(vector) (11.56)

Fi,j(~k) = C(k)kikj +D(k)δi,j (tensor) (11.57)

where Fθ, FθL, C and C are all functions of k = |~k| only.
It is straightforward to show (using continuity and the definitions) that C(k)

and D(k) are simply related to the energy spectrum function, E(k), so the most
general form of the two-point vector-vector spectrum in an isotropic field is given
by:

Fi,j(~k) =
E(k)

4πk4
[k2δij − kikj] (11.58)

Exercise: Prove equation 11.58 Hint: use the definition of E(k) and change
the surface integral to spherical coordinates using dS(k) = k2 sinφdφdθ.

This isotropic spectral equation also has important implications for the one-
dimensional spectra as well. In particular, it is straightforward to show that:

F
(1)
1,1 (k1) =

1

2

∫ ∞

k1

E(k)

k3
[k2 − k2

1]dk (11.59)

F
(1)
2,2 (k1) =

1

4

∫ ∞

k1

E(k)

k3
[k2 + k2

1]dk (11.60)

Exercises: Prove equations 11.59, and 11.60. Hint: substitute the general
isotropic expression into the definition of the one-dimensional spectra and change
to polar coordinates, noting that σdσ = kdk where σ2 = k2

2 + k2
3.

It follows by repeated differentiation (and application of Leibnitz rule for dif-
ferentiating under the integral sign) that:

E(k) = k2d
2F

(1)
2,2

dk2
− k

dF
(1)
1,1

dk
(11.61)

= k3 d

dk

1
k

dF
(1)
1,1

dk

 (11.62)

Exercises: Prove equations 11.61 and 11.62.
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Chapter 12

Measuring spectra from
experimental and DNS data

12.1 Introduction

The theoretical considerations of the next chapters will make clear the importance
of turbulence spectra. It is important both to be able to measure them experi-
mentally, or alternatively, calculate them from DNS data. Unfortunately, there
are several types of problems which one encounters, some of which are common to
both, others unique to each. All are extremely important, and failure to properly
understand the limitations can render the data useless.

The primary common problems for both DNS and experiments are the sta-
tistical errors one encounters from having only a limited number of samples, and
the problems related to the finite spatial extent of the simulation or experimental
facility. The sampling problems are the exact counterpart to those we encountered
in Chapter 2 when making statistical estimates of single point quantities. This
statistical uncertainty complicates all spectral data interpretation, especially the
identification of spectral peaks and roll-offs. The finite domain problems arise
from the fact that no experiment or simulation can be truly homogeneous, hence
can at best be a model of homogeneous flows over some limited range of scales or
times. It may seem that these differences are unimportant, but failure to recog-
nize them can result in models for turbulence which depend more on the boundary
conditions of the experiments (or DNS) than on the dynamics of the turbulence.
Also, the finite size of measuring arrays or ‘windows’ can itself create spectral
leakage

This chapter will focus on how to obtain a velocity spectrum from time-varying
or spatially vary data from one or more probes. We will first examine how one
processes data from time-varying signals, then we will discuss how such data can
be interpreted as a space-varying using Taylor’s hypothesis. Finally the ideas will
be generalized to making spatial measurements directly.

215
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12.2 Determining the wave-number spectrum from

the spatial auto-correlation

The most obvious way to obtain a frequency spectrum is to measure the two-point
correlation to as large a separation as possible, then Fourier transform it to directly
obtain the corresponding one-dimensional spectrum. For example, suppose you
have two probes, one fixed, the other movable, each measuring the streamwise
component of the velocity. You would like to use them to measure B1,1(r, 0, 0)
where:

B1,1(r, 0, 0) ≡< u1(x1, x2, x3)u1(x1 + r, x2, x3) > (12.1)

And you would then like to Fourier transform B1,1(r, 0, 0) to obtain the one-

dimensional spectrum F
(1)
1,1 (k1) where:

F
(1)
1,1 (k1) = FT{B1,1(r, 0, 0)} =

1

2π

∫ ∞

−∞
B1,1(r, 0, 0)e

−k1rdr (12.2)

But there is a limit to how far apart you can put your probes because of the
finite extent of your facility. If your fixed probe is at the center, the most you can
measure is L/2 < r < L/2; i.e, you can only obtain:

B1,1L(r1) ≡
{

B1,1(r1, 0, 0) ,−L/2 < r < L/2
0 , otherwise

(12.3)

Therefore you really can’t perform the integration above, even though your es-
timate of B1,1 is perfect for the separations you can measure (and of course it
is never is, due to the statistical error we will discuss later). The most you can
possibly compute is the finite space transform given by:

F
(1)
1,1L(k1) =

1

2π

∫ L/2

−L/2
B1,1L(r1)e

−k1r1dr1 (12.4)

We can re-write this as the product of the true correlation, B1,1(r1, 0, 0), and a
‘window function’ as:

F
(1)
1,1L(k1) =

1

2π

∫ ∞

−∞
B1,1L(r1)wL(r1)e

−k1r1dr1 (12.5)

where wL(r) is the ‘top-hat window function’ defined as:

wL(r) =

{
1 , |r| ≤ L/2
0 , |r| > L/2

(12.6)

Parseval’s Theorem tells us that the Fourier transform of the product of two
functions is the convolution of their Fourier transforms. Thus our ‘measured
spectrum’ is given by:
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F
(1)
1,1L(k1) =

∫ ∞

−∞
F

(1)
1,1 (k1 − k)ŵL(k)dk =

∫ ∞

−∞
F

(1)
1,1 (k)ŵL(k1 − k)dk (12.7)

where ŵ(k) is the Fourier transform of the top-hat window function given by:

ŵL(k) ≡ FT{wL(r)} =
(
L

2π

)
sin(kL/2)

(kL/2)
(12.8)

It is clear that in spite of our best efforts, we have not measured the true
spectrum at all. Instead all we have obtained is a garbled version of it which
filtered through the window function, ŵ(k). The entire process is very much like
looking through a glass-window at something on the other side. If the glass is
not of high quality, then the image we see is distorted, perhaps even to the point
where we cannot even recognize it. This can happen with spectra as well, so it is
very important understand what the window has done.

Figure ?? shows both the top-hat and its Fourier transform. Note that most
the area under ŵ is between the zero-crossings at k = ±π/L. But notice also the
other peaks at higher and lower wavenumbers, and especially the rather strong
negative peaks. These ‘side-lobes’ roll off as |2/kL|; but even so they can cause
considerable leakage from high spectral values to low ones, and also cause false
peaks due to the negative values. Obviously, the larger the domain (L/2, L/2),
the closer the narrower the filter, and the closer the window approaches a delta
function, δ(k). In the limit of infinite L, the true spectrum is recovered, since
convolution of any function with a delta function simply reproduces the original
function.

True spectra can never be negative, of course. But ‘measured’ spectra can
be, so they must be interpreted carefully. Usually it is desirable to reduce these
unphysical and spurious values by introducing additional window functions into
the data processing before Fourier transformation. (Afterwards is too late!) Pop-
ular choices are the ‘hanning window’, the ‘hamming window’, and the ‘Parzen’
window. All of these choice pre-multiply the measured correlation by a function
which rolls off less abruptly than the top-hat. This reduces the side-lobes and
their bad influences, usually by making them roll-off more rapidly. But it also
reduces the resolution in wavenumber space by making the effective span-wise
extent less and the ‘band-width’ greater. As a result, there is no simple ‘best
way’ to process data. Each experiment must be considered separately, and each
result carefully analyzed to see which peaks are real, which are false, which are
reduced by leakage, which roll-offs are physical and which are not. Usually this is
accomplished by analyzing the same data with several different windows. Then,
with luck, it will be possible to infer what the real spectrum might be. But the
entire process is really an art. Like any art skill, the more practice you have, the
better you get at making the right choices. And like any newly acquired skill,
beginners be especially careful.
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12.3 The finite Fourier transform

There is another way to obtain the spectrum of a signal without first computing
the autocorrelation — direct transformation of the incoming signals. The basic
idea is quite simple and follows directly from the definition of the Fourier transform
of the signal. For example, consider the same velocity component, u1(~x, considered
above with x2 and x3 held constant. The one-dimensional transform in the x1

direction of this velocity component is given by:
Now again in the real world, our information is limited to a finite domain, say

(−L/2, L/2) as before. Therefore the most we can really compute from our data
is:

12.4 Taylor’s Hypothesis

12.4.1 The Frozen Field Hypothesis

12.4.2 The Effect of a Fluctuating Convection Velocity

12.5 Resolution and Spatial Filtering



Chapter 13

Dynamics of Homogeneous
Turbulence

13.1 The Fourier transformed instantaneous equa-

tions

We are about ready to apply our results from Fourier analysis to the dynamical
equations for homogeneous turbulence. Now with all the different types of spec-
tra flying around it would be really easy to forget that this was, after all, the
whole point of decomposing the instantaneous velocity in the first place. But our
original purpose was to investigate the different roles that the different scales of
motion play in the dynamics of the motion. And dynamics means the interplay
of accelerations and forces; so back to the instantaneous equations we must go.

Now there are two ways we can proceed: We could Fourier transform the
instantaneous equations for the fluctuations in a homogeneous flow. Then we
could examine these, and from them even build equations for the energy spectra
by using the Wiener-Kinchine relation. Alternatively we could build a set of
equations for the two-point velocity correlations, and transform them to get the
spectral equations. Either way, we end up in the same place — with a set of
equations for the velocity cross-spectra, which we can then integrate over spherical
shells of radius k to get an equation for E(k, t). Let’s try both, since each has a
unique piece of information.

Let’s begin by simply using equation 3.27 for the instantaneous fluctuating
velocity. For now let’s just assume there is no mean velocity at all and that
the flow is homogeneous. If we substitute equation 11.21 for the instantaneous
velocity and define a similar transform for the fluctuating pressure, the integrand
of our transformed equation reduces to:

∂ûi(~k, t)

∂t
+

∫ ∫ ∫ ∞

−∞
(−ik′

j)ûj(~k′)ûi(~k′ − ~k, t)d~k′ (13.1)

= −1

ρ
kip̂(~k, t)− 2νk2ûi(~k, t)
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The second term on the left-hand side is a convolution over the wavenumber vector
and results from the fact that multiplication in space corresponds to convolution
in wavenumber, and vice versa. Since we are assuming incompressible flow, the
pressure term can also be expressed in terms of the velocity using the continuity
equation. For an exercise see if you can show this.

Note that like the velocity fluctuation itself, the Fourier velocity coefficients,
ûi(~k, t), are themselves random and of zero mean. Thus each realization of them
will be different, and it is only the spectra formed from them which will be de-
terministic. This means averaging in some way is probably required at some
point. But even without any kind of averaging, equation 13.1 is a very important
equation because even a cursory examination tells us a lot about turbulence.

First note that the viscous terms are weighted by a factor of k2, compared to
the the temporal decay term. Obviously viscous effects are concentrated at much
smaller scales (higher wavenumbers) than are inertial effects.

Second, note that the non-linear terms show up in a convolution involving three
wavenumbers: ~k, ~k′, and also ~k′−~k. This is the only place the non-linearity shows
up. Since we know non-linearity is the essence of turbulence, then we can say for
sure that turbulent non-linear interactions involve only “triads” of wavenumber
vectors. Some possibilities are shown in Figure ??. The study of which triads
dominate the energy transfer has been important to turbulence for a long time.
Although all triads can be important, it is generally believed that the local inter-
actions are the most important; i.e., those for which all three wavenumbers have
about the same magnitude. This can be very important in making models for the
turbulence — like LES, for example.

So what have we learned so far? That the energetic scales decay primarily
by the non-linear triad interactions which move the energy to higher and higher
wavenumbers. Eventually the viscosity comes to dominate these high wavenum-
bers and the energy is dissipated — at the smallest scales of motion. Isn’t it
amazing how we can learn all this just by examining an equation without ever
solving it? The neat thing is that once you learn to do this for turbulence you can
do it for just about every field of science or engineering. The study of turbulence
really has changed your life.

The discretized version of equation 13.1 is the basis for most spectral method
DNS solutions (and pseudo-spectral) method solutions using very large parallel
computers. Modern Fast Fourier Transform (FFT) algorithms allow huge arrays
to be rapidly manipulated much more quickly than finite difference techniques.
The emergence of these techniques, especially over the past decade, has been one of
the most exciting aspects of turbulence research. And it gets even more interesting
with each increase in computer capacity. Yet as we noted above, though, there are
some fundamental questions which remain, some of which we will mention below.
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13.2 The spectral equations

It is straight-forward to proceed from equation 13.1 to a set of spectral equations.
It is worthwhile though to back up a step and arrive at the same point another
way — via the two-point correlation equations. The procedure for deriving these
equations are almost the same as those used to derive the single-point Reynolds
stress equations, with only one difference: the instantaneous equations at one
point are multiplied by the velocity component at another.

Thus the equation for the instantaneous fluctuating velocity at ~x, say ui =
ui(~x, t), is multiplied by the fluctuating velocity at ~x′, say u′

i ≡ ui(~x′, t); i.e.,

u′
i

[
∂ui

∂t
+ · · · = · · ·

]
(13.2)

And vice versa,

ui

[
∂u′

i

∂t
+ · · · = · · ·

]
(13.3)

These are averaged and added to obtain an equation for the two-point velocity
correlation as:

∂ < uiu
′
j >

∂t
+

∂ < uiuku
′
j >

∂xk

+
∂ < uiu

′
ju

′
k >

∂x′
k

(13.4)

= −1

ρ

(
∂ < pu′

j >

∂xi

+
∂ < p′ui >

∂x′
j

)
+ ν

(
∂2 < uiu

′
j >

∂xk∂xk

+
∂2 < uiu

′
j >

∂x′
k∂x

′
k

)

Note that we used a “trick” to pull the derivatives outside the product: ui is not
a function of ~x′, nor is u′

i a function of ~x. Also we have assumed no mean velocity.
Now let’s consider the implications of homogeneity. We know that this means

that the two-point moments can only depend on ~r = ~x′ − ~x. For convenience let’s
define another variable, ~ξ = ~x′ + ~x, and then change variables from ~x′, ~x to ~ξ, ~r.
The chain-rule immediately implies that:

∂

∂x′
i

=
∂

∂ξj

∂ξj
∂x′

i

+
∂

∂rj

∂rj
∂x′

i

=
∂

∂ξi
+

∂

∂ri
(13.5)

Similarly, it is easy to show that:

∂

∂xi

=
∂

∂ξi
− ∂

∂ri
(13.6)

Now this may seem like so much hocus-pocus until you realize that we are only
differentiating functions of ~r only, so all the derivatives involving ~ξ are identically
zero.
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Thus homogeneity reduces our two-point Reynolds stress equation to:

∂Bi,j(~r, t)

∂t
=

∂

∂rk
[Bik,j(~r, t)−Bi,jk(~r, t)] (13.7)

+
1

ρ

[
∂Bp,j(~r, t)

∂ri
− ∂Bi,p(~r, t)

∂rj

]
+ 2ν

∂2Bi,j(~r, t)

∂rk∂rk
(13.8)

Don’t lose heart yet, we are almost there. Now we could Fourier transform
this directly, but since we are only going to work with the trace, let’s contract the
indices first, then Fourier transform. As usual, setting i = j causes the pressure
term to drop out, and we are left with:

∂Bi,i(~r, t)

∂t
=

∂

∂rk
[Bik,i(~r, t)−Bi,ik(~r, t)] + 2ν

∂2Bi,i(~r, t)

∂rk∂rk
(13.9)

We can immediately take the three-dimensional Fourier transform to obtain:

∂Fi,i(~k, t)

∂t
= Gi,i(~k, t)− 2νk2Fi,i(~k, t) (13.10)

where Gi,i contains the non-linear interactions and is related to the transform of
the triple moment terms by:

Gi,i(~k, t) = ikl[Fil,i(~k, t)− Fil,i(−~k, t)] (13.11)

What is arguably the most famous equation in turbulence theory results imme-
diately by integrating over spherical shells of radius k and invoking the definition
of the three-dimensional energy spectrum function, E(k, t). The result is:

∂E(k, t)

∂t
= T (k, t)− 2νk2E(k, t) (13.12)

where T (k, t) is non-linear spectral energy transfer defined as the integral over

spherical shells of radius k of Gi,i(~k, t)/2. Note that like all other averaged equa-
tions in turbulence, this equation is not closed since there are two unknowns but
only one equation. Nonetheless, there will be much we can learn from it.

It is easy to show by integration that the left-hand side integrates to the left-
hand side of equation 5.2, while the last term on the right-hand side integrates to
the dissipation; i.e.,

1

2
< q2 > =

∫ ∞

0
E(k, t)dk (13.13)

ε = 2ν
∫
k2E(k, t)dk (13.14)

It follows that the integral of the spectral transfer term must be identically zero;
i.e., ∫ ∞

0
T (k, t)dk = 0 (13.15)
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Figure 13.1: DNS data of Wray [?] for decaying isotropic turbulence showing how
E(k, t) decays with time. Note limited resolution at low wavenumbers.
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Figure 13.2: DNS data of Wray [?] for decaying isotropic turbulence showing
T (k, t) and 2νE(k, t) at a single time.

(This can also be proven directly from the definition of T .) Thus the net effect
of the spectral energy transfer term is zero. It can only act to move energy from
one scale to another. In other words, it is exactly the term we were looking for,
since it alone can move energy from the scales where they are generated to those
where it can be dissipated.

13.3 The effect of Reynolds number on the spec-

tral equations

We are now in a position to examine how turbulence changes during decay. Fig-
ure ?? depicts linear-linear plots of typical energy, dissipation and energy transfer
spectra. The energy spectrum, E(k, t), rises rather rapidly for small wavenum-
bers, probably as km where 1 < m < −5/2 and is determined by the power law
decay exponent of the energy. Most believe E(k, t) peaks near k ≈ L−1 where
L is the longitudinal integral scale. After this is rolls-off for a while as k−5/3+µ

where µ is very close to zero for large Reynolds numbers. Then finally it rolls
off exponentially for wavenumbers above about one fifth the inverse of the Kol-
mogorov microscale. 1/η. Since the kinetic energy of the turbulence is the integral
under the energy spectrum, it is easy to see that most of the energy comes from
the spectral region near the peak. Nonetheless, the contribution from the slow
roll-off can not be neglected and must be considered in designing experiments (or
simulations) to avoid underestimating the energy.
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The dissipation spectrum is, of course, very closely related to the energy spec-
trum since it is the same spectrum multiplied by 2νk2. The effect of the pre-factor
is weight the dissipation to the highest wavenumbers so most of the dissipation
occurs at wavenumbers higher than the peak which is near k ≈ 0.2/ηK . This
means that experiments or simulations must carefully resolve wavenumbers to at
least ηK (or higher) if the dissipation is to be accurately determined. Resolution
requirements are much more severe for higher spectral moments.

The spectral transfer term does exactly what we thought it should do. The
transfer term is negative for low wavenumbers and nearly equal to −∂E/∂t. Thus
on the average, it takes energy from the energy-containing scales where there is
very little dissipation and moves it somewhere. But where? The answer lies in
the high wavenumbers, where the spectral transfer is positive and nearly equal to
the dissipation.

13.4 Conflicting views of spectral transfer

Since Kolmogorov it has been believed that it is the ratio of the integral scale, L,
to the Kolmogorov microscale, ηK , which determines the shape of the the spectra,
and the separation between the energy and dissipation ranges. But there are
recent indications that this may not always be true, if at all, as discussed below.
For now, let’s assume it is true.

Consider what happens as R ≡ L/ηK becomes very large. The Kolmogorovian
view of the energy, dissipation and transfer spectra for three different values of R
are illustrated in Figure ??. For R ≈ 100 (which is typical of many simulations
and laboratory experiments), the energy and dissipative ranges overlap, and there
is really no region at all where the spectral transfer is near zero. By contrast, for
R > 104, the dissipative ranges and energy-containing ranges are widely separated.

At low wavenumbers, the spectral decay is almost entirely due to the spectral
transfer, and this region is virtually independent of viscosity. At high wavenum-
bers, there is virtually no energy, and the balance is almost entirely between spec-
tral transfer and dissipation. And in-between the energy and dissipative ranges,
there is an extensive spectral region where there is virtually no energy, no dissi-
pation, and the spectral transfer is zero. This is the so-called inertial subrange of
the spectrum which only emerges at very high wavenumbers, and will seen below
to be the region characterized by the near k−5/3 behavior noted above.

So where it the problem with this picture. The problem is that this picture
has never been confirmed in any flow for which dE/dt was not identically zero
due to stationarity. Figure ?? is taken from a paper by Helland et al. in 1977 and
shows data taken in several wind tunnels, one the Colorado State University wind
tunnel which is among the largest in the world. Figure ?? shows similar data in
DNS of decaying turbulence taken from George and Wang (2002). These DNS
data are at values of Rλ between 30 and 60, which is about the same as most of
the wind tunnel data. The CSU data are at Rλ ≈ 240. Clearly neither the DNS
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nor the experiments in decaying turbulence show the expected region in which
T (k, t) ≈ 0. By contrast, the ‘forced DNS’ of Kaneda et al. (2002) does show an
extensive range for which T ≈ 0.

So we are left with the following dilemma: does the Kolmogorov picture appear
to be correct for the forced turbulence only because of the absence of alternatives.
In particular, forced turbulence is stationary, so above the wavenumber of the
forcing, no other value of T is possible if the dissipative wavenumbers are large
enough. Or would the results for decaying turbulence give the same results if the
Reynolds number were high enough? If not, could it be that the whole idea of
Kolmogorov is wrong and there is another idea which better describes the world
as we find it? The next chapter explores such a possibility.



Chapter 14

‘Kolmogorov’ Turbulence

There are several different approaches to the spectral energy equation, each rep-
resenting very different kinds of turbulence. This chapter presents and explores
the classical theory, originally due at least in part to Kolmogorov (1941). It has
been developed and refined by many. It was first presented in the form presented
here by George K. Batchelor and his co-workers, and most eloquently in his now
classic book ’Homogeneous turbulence’ (Batchelor 1953). Most of the things we
thought we knew about turbulence in the 20th century (including all turbulence
models) are based at some level on these ideas. So even if they turn out not to
be completely correct, it is important to learn about them – if for no other reason
than to understand how and why the engineering models have developed the way
they did. I’ve already given some hints in the previous chapters that I don’t be-
lieve this so-called Kolmogorov view of turbulence to be the whole story. In fact,
at this writing I have come to believe that there probably are three different kinds
of turbulence, only one of which behaves like Kolmogorov. This is not a question
of Kolmogorov’s ideas being wrong, but instead my belief that the underlying as-
sumptions do not apply to all flows. Therefore in preparation for the new ideas in
subsequent chapters, I shall try to make it quite clear what what the underlying
assumptions and hypotheses are.1

1Suprisingly, even the most ardent proponents and defenders of ideas in turbulence, especially
those of Kolmogorov and his followers, often seem to have little understanding of what these
underlying hypotheses are. Therefore they feel quite threatened when one suggests there might
be problems. Unfortunately this seems to be a common phenomenon in the history of science,
and has been described by Kuhn [?] as operating within a paradigm where everyone has agreed
on a descriptive language of what they think they believe, but no one knows precisely what.
This of course makes it almost impossible to challenge an existing theory, since no one really
understands it. Thus science falls into a mode more like a religion than real (or at last ideal)
science where hypotheses are tested and revised when found wanting.

227
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14.0.1 The ‘universal equilibrium’ range

We shall start our discussion with the equation 13.12 for decaying homogenous
turbulence, since it has all the features we need; i.e.,

∂E(k, t)

∂t
= T (k, t)− 2νk2E(k, t) (14.1)

where E(k, t) is the three-dimensional energy spectrum function, and T (k, t) is
non-linear spectral energy transfer, also defined as the integral over spherical shells
of radius k of the non-linear spectral transfer. It has already been noted that
this equation is not closed since there are two unknowns but only one equation.
Also remember that this equation assumes only homogeneous turbulence, and not
isotropic turbulence. Also note that we could include extra terms to account of
energy production and spectral scrambling by a mean velocity gradient, but we
avoid for now this extra complexity. This neglect might seem to be a bit confusing,
since we will follow (at least in this chapter) Kolmogov and suggest that the results
apply to all flows, at least at scales of motion much smaller than that at which
the energy is put into the turbulence and if the turbulence Reynolds number is
high enough. But we will come back to this in subsequent chapters, so if things
seem sometimes less than obvious, you will not be the first to think so. So save
those thoughts.

Now the first thing we need to remind ourselves is what the basic terms in this
equation are. The left-hand-side is just the rate at which energy changes (decays
in this case) at any given wavenumber, so its integral over all wavenumbers is the
rate of change of kinetic energy with time. The last term on the right-hand-side
is the rate at which kinetic energy is converted to internal energy by viscosity and
the deformation of fluid elements; i.e., the rate-of-dissipation, ε. Clearly this must
equal the integral of the left-hand-side (since there is no production or transport
in our simplified homogenous problem); i.e.,

d

dt

∫ ∞

0
E(k, t)dk = −2ν

∫ ∞

0
k2E(k, t)dk = −ε (14.2)

All of this, of course is a consequence of the fact that the integral of the non-linear
transfer, T (k, t) over all wavenumbers is exactly zero; i.e.,∫ ∞

0
T (k, t)dk = 0. (14.3)

In words, there is no net transfer of energy due to the non-linear (or triadic) inter-
actions; whatever is taken out at one wavenumber must be put back somewhere
else (in wavenumber space).

The basis of Kolmogorov’s ideas (or hypotheses) is that T (k, t) takes energy
out at low wavenumbers and puts it in at high wavenumbers. In fact, this is a
probably a pretty good approximation for many flows since the energy is usually
put into the flow at the large scales (the energetic scales corresponding roughly to
the peak in the energy spectrum) and it is moved by the non-linear interactions
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to scales where it can be dissipated. This is because in flows with mean shear
the turbulence energy is produced by the working of the Reynolds shear stresses
agains the mean flow gradient, and this happens preferentially at the energetic
scales. You can see why in Figure 14.1 where the Reynolds stress spectrum peaks
about where the energy spectrum does, but it falls off much more rapidly with
increasing wavenumber. But the truth is though that we really don’t know very
much for sure about the non-linear energy fluxes, except for a few low Reynolds
number DNS and two experiments in decaying turbulence (by Van Atta and his
co-workers). The exception to this are the relatively recent high 4096k Reynolds
number simulations of forced turbulence DNS carried out in Japan on their Earth
Simulator by Kaneda, Ishihara and co-workers, which pretty much confirm the
arguments of this chapter. We will postpone to Chapter ?? a discussion of the
generality of their results and what they imply about all kinds of turbulence.

So the bottom line (at least for this chapter) is that even if we don’t have a
simple homogenous turbulence, the turbulence at sufficiently high-wavenumbers
might behave as though we do – at least we can hypothesize that it might do so.
In fact many flows actually do behave this way (at least approximately), even at
modest Reynolds numbers. Note that as of this writing (in 2012) probably most
workers in turbulence believe all of the above to be true for almost all flows. But
they (like you) haven’t seen or read the next two chapters.; and truth to tell would
probably find them too threatening to believe anyway :-).

So here is the picture on which the ‘classical’ analysis is based: energetic
scales of motion at wavenumbers of the same order of magnitude as the energy
spectrum peak, say kpeak; and dissipation scales of motion mostly at much higher
wavenumbers. And since obviously there has to be some means of getting energy
from the large energetic scales to the smaller dissipative ones, this is carried out
by the non-linear transfer among scales. In the classical picture the transfer has
been generally been believed to accomplished by some type of energy cascade in
which energy moves from one band of wavenumbers to higher bands, much like a
waterfall (or cascade) where at each level the water is distributed over ever more
smaller waterfalls (Tennekes and Lumley, 1972, chapter 8 provide a nice model
for this ‘leaky’ cascade.) Originally the cascade in physical space was imagined
to be a kind of progression in which large ‘eddies’ broke down into ever smaller
eddies. This belief gave rise to the famous Richardson poem:

Big Whorls Have Little Whorls

Big whorls have little whorls
That feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.”

– Lewis F. Richardson2

2For those of you who like to link pieces of history together, Lewis Richardson was a British
Fluid Mechanicist of the early 20th Century, and was the uncle of Lord Julian Hunt, well-known
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Figure 14.1: True spatial spectra from a ‘transformed’ turbulent jet at centerline
and η = r/δ1/2 = 1. Note the k−5/3-range in both velocity components (u-black,
v-red) and the k−7/3-range for the Reynolds shear stress spectra (uv-green) at
η = 1. The Reynolds shear stress is zero at the centerline. The faster rolloff
at higher wavenumbers is mostly due to spatial filtering of the stereo PIV. From
Wänström Ph.D. Thesis 2009, Wänström et al. 2011.
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Now that we can actually see the vortical motions in at least some flows (thanks
to DNS, PIV and wonderful flow visualization), we are not so sure of this picture
any more, and the whole ‘cascade’ idea is questionable. Nonetheless, the energy
definitely ends up at the dissipative scales, either by direct transfer from large to
small or a progression of transfers, or some combination of both. Note that in
the real world there can also be a reverse transfer from small scales to large, from
high wavenumber to low. But since the largest velocity gradients are mostly at
the smallest scales, the net effect is a transfer to smaller scales where viscosity
wins.

We can develop this picture one step further. If most of the energy is at
the smaller wavenumbers (the energetic scales), then these energetic scales will
dominate the non-linear transfer (the triadic-interactions there). Moveover, since
the fluctuating velocity gradients are relatively small at these low wavenumbers
compared to those at much higher wavenumbers, then there is really very little
dissipation down here at these wavenumbers where the energy mostly is. This can
be easily seen by looking at the last term in equation 14.1 where the multiplication
of E(k, t) by k2 skews its integral to much higher wavenumbers, and makes it
nearly zero for low wavenumbers. So at least at sufficiently high Reynolds number
(we will see which Reynolds number eventually), we can imagine a turbulence in
which the energy is mostly at low wavenumbers (large scales) and the dissipation
is mostly at much higher wavenumbers (small scales). And in our picture there is
very little overlap.

14.0.2 The ‘Universal Equilibrium Range’ hypothesis

Now we are ready for Kolmogorov’s fundamental hypothesis, on which all the
other consequences of this theory are based: The Universal Equilbrium Range
Hypothesis. But before stating it, remember that it was made long before we
knew many of the things we know now. So while it was a brilliant intellectual
triumph in the 1940’s and was the basis for most our study of turbulence since,
this does not mean it is necessarily correct. We must insist it stand on its own
merits today. And in subsequent chapters we will do that and find that there are
some problems. But first, what is it?

14.0.3 The basic argument

The equilibrium range hypothesis: In brief the hypothesis is that for wavenum-
bers sufficiently higher than the those characterizing the energy-containing range
(say k >> kpeak), ∂E(k, t)/∂t ≈ 0. And most importantly, it is negligible relative
to the non-linear transfer and dissipation.

The basic argument put forth to support this hypothesis is that the time scales
of the smallest scales or eddies (or highest wavenumbers) are so much smaller than

British turbulence researcher from my generation.
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the time scales of the energy-containing eddies (or energetic wavenumbers) that
the smallest scales are effectively in statistical equilibrium (when measured in the
time-frame of the energy-containing ones). Back in the 1940’s we knew very little
about the details of what turbulence actually looked like. In particular, it was
quite reasonable to imagine many small eddies acting quite independently of large
motions. So this whole line of reasoning which assumes that the small scales are
adjusting in these short times, and not being locked instead in some way to the
large scale structures, was quite reasonable. But modern flow visualization and
DNS have given us a much better picture; and now we know a lot about coherent
structures and the tendency of turbulence to appear as a nest of many small
vortical structures. And we know that a long vortex which is being stretched
along its axis clearly spins up, but the rate at which it does so is determined by
the large scales that are doing the stretching. So even before the considerations
of the next chapter, we can at least see a reason to be a bit suspicious of this line
of argument. But let’s pursue it anyway.

We can see why the equilibrium range hypothesis might be true by the following
arguments. (Note that we will need to use information that we later derive from
the consequences of Kolmogorov’s hypothesis, so if you think we are assuming
things we have not proven yet, we are. But hang in there for now – just don’t
forget your questions.) And note carefully that these are all plausibility arguments
with very little quantitative about them. So as with all plausibility arguments we
should be a bit suspicious, and for sure we should be willing to submit them any
objective tests we can think of – even if they have appeared to be true for a long
time.

We know from experience that most of the dissipation occurs for wavenumbers
below k ηKol = 1 (Typically about 99%.) And we have ‘guessed’ earlier that we
can define a dissipative time scale from just the rate of dissipation of turbulence
energy, ε, and the kinematic viscosity, ν; and it is given on dimensional grounds
alone by τKol = (ν/ε)1/2. So let’s compare τKol to a time-scale characteristic of
the energy-containing eddies, say τl ∝ l/u ∝ kpeaku/2π where 3u2/2 is the kinetic
energy. Obviously we need an estimate for ε, so we will use another consequence
of the theory we are deriving; namely we define l = u3/ε and hope that l is
proportional to the size of the energetic scales (roughly the integral scale) or
l ∝ 2π/kpeak. Now we can substitute for ε ∝ u3/l to obtain:

τKol

τl
=

[
ul

ν

]−1/2

= R
−1/2
l (14.4)

where we have defined a turbulence Reynolds number as Rl = ul/ν.

Clearly the larger the turbulence Reynolds number the smaller the ratio of
time scales and the more the dissipative scales would seem to have a chance to be
in equilibrium, at least relative to the energetic scales. For example, if we require
the time scale ratio to be less than one-tenth, the turbulence Reynolds number,
Rl, must be two orders of magnitude greater. So this doesn’t look like it is a
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very demanding criterion. BUT it only insures that the time scale ratio at the
Kolmogorov microscale is small, not at the scales which are larger. To consider
those we need to extend our ideas a bit further – and this leads us to the so-called
inertial subrange.

14.1 The inertial subrange

14.1.1 A range without viscosity

Let’s apply the same line of reasoning to wavenumbers that are much larger than
kpeak but much smaller that k = 1/ηKol; i.e., kpeak << k << 1/η. You can see
that a much higher ratio of l/η is required to satisfy this inequality than for the
time-scale ratio of equation 14.4 to be very small.

How do we know whether these might be (at least by the same arguments)
in near statistical equilibrium? We can estimate a time-scale for an arbitrary
wavenumber by simply using the energy spectrum itself and the local wavenumber.
On dimensional grounds alone we define the local time scale to be:

τk = [k3E(k, t)]−1/2 (14.5)

Now we need to use another result of the theory we are about to derive, namely
the form of the spectrum in the so-called inertial subrange, or more commonly,
the k−5/3-range. We will derive this later, but for now note that in it, E(k, t) =
αKolε

2/3k−5/3, where αKol is the so-called Kolmogorov constant which is usually
assumed to be between 1.5 and 1.7. (The real miracle here is that the dissipation,
ε, should make its way into an expression about the behaviour of the spectrum in a
range in which there is assumed to be no dissipation, but save your questions about
this till later – there is a reason.) Substituing this result into our local time scale

leads to the time scale of ‘eddies’ in the inertial subrange as τk = α
−1/2
K k2/3ε1/3.

Using ε = u3/l yields immediately the ratio of the time scale at given value of k
in the inertial subrange to that of the energetic scales as:

τk
τl

=
1√
α
(kl)−2/3 (14.6)

This can be much less than unity only if kl >> 1, to which we are of course willing
to restrict ourselves; and simultaneously kηKol << 1.

14.1.2 Some problems already

It has been generally assumed, at least since the 1960’s that this hypothesis of
Kolmogorov’s in fact describes all turbulence for scales much smaller than those
at which the energy is put into the flow, no matter how generated. From their
definitions, l/ηKol = R

3/4
l . So both inequalities can be satisfied only if R

3/4
l >>>>

1. This is a very stringent requirement indeed. For example, the requirement is
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only marginally satisfied if Rl = 104, since then l/ηKol = 103. Very few lab
experiments or DNS even come close to this.

Also this whole part of the spectrum has been widely assumed to be ‘univer-
sal’, hence the phase ‘Universal Equilibrium Range’. Nonetheless, we’ve had great
difficulty pinning down exactly what that universal spectrum is, or even agree ex-
actly what the value of αKol is. All of this has been complicated, of course, by our
difficulties in trying to measure the dissipation. In fact, most of the time we just
guess values of the dissipation that make the different spectra look like they agree
at high wavenumbers. One of the few exceptions were the measurements in three
different flows by Champagne 1978 shown in Figure ??. Clearly these are not the
same. Is the difference because the flows are different? Or because the Reynolds
numbers are different and not high enough for the lower ones? Or because the
theory is wrong? Or all three? As you can see, arguments to rationalize to the
contrary, there is still much to be done in turbulence.

There are some other difficulties as well. Although there have been a number
of experiments and simulations (using forced DNS) which purport to support
the idea presented above, unfortunately it does not seem to have been noticed
that there is one other very important circumstance under which Kolmogorov’s
hypothesis is satisfied exactly. In particular, most experiments are in flows which
are statistically stationary, so the left-hand-side of equation 14.1 is identically
zero.. Clearly you can’t prove Kolmogorov’s theory by using data from statistically
stationary flows. But that is exactly what we have tried to do. And in fact it
has been the non-stationary flows which have been the major problem for us, like
decaying or growing turbulence in particular. Nonetheless, before examining them
(in the next chapter), let’s try to consider the full consequences of Kolmogorov’s
ideas.

14.1.3 The inertial subrange

Now let’s assume Kolmogorov’s ideas to be correct and that they indeed represent
a spectral range which can be considered to be in statistical equilibrium. This of
course presumes the Reynolds number to be sufficiently high, or more particularly
l/ηKol >> 1. If so then we can split the energy equation at some arbitrary
wavenumber, say km, where km is some intermediate wavenumber simultaneously
satisfying k >> kpeak and simultaneously km << 1/ηKol. Then if kpeak <<<<
1/ηKol, we can safely assume there to be very little dissipation below k < km so
that the energy equation reduces simply to:

∂E

∂t
≈ T, k < km (14.7)

For convenience we can define a spectral flux, say εk(k, t), so that:

εk(k, t) = −
∫ k

0
T (k′, t)dk′ (14.8)
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where k′ is just a dummy integration variable (which we need since we have used
k as the upper limit of integration). Note that many confuse this spectral flux,
εk with the rate of dissipation of kinetic energy, ε. It is not! In fact it varies
with wavenumber, k, and represents the net effect of the non-linear terms in
‘removing’ energy from wavenumbers smaller than k. So why you ask must we
confuse things by calling it εk. The answer will come soon, and represents one of
the most beautiful results in turbulence theory – and also one of the most poorly
understood.

Now since T (k, t) is the energy added (or removed if the sign is negative) at
each wavenumber, it is easy to see that the spectral flux is the net energy crossing
each wavenumber (from low to high since we have included the negative sign in
the definition). Differentiation yields immediately the non-linear spectral transfer
as the negative of the gradient of the spectral flux; i.e.,

T (k, t) = −dεk(k, t)

dk
(14.9)

We can integrate equation 14.7 from 0 ≤ k ≤ km to obtain:

d

dt

∫ km

0
E(k, t)dk =

∫ km

0
T (k, t)dk (14.10)

But since we have assume almost all of the dissipation to occur at much higher
wavenumbers than km and almost all of the energy to be at wavenumbers below
km, it follows immediately that:

d

dt

∫ km

0
E(k, t)dk ≈ d

dt

[
1

2
〈uiui〉

]
= −

∫ km

0

dεk(k, t)

dk
dk = −εk(km, t) (14.11)

since by definition εk(0, t) = 0. In words, the spectral flux crossing our intermedi-
ate wavenumber, km, is almost equal to the time derivative of the kinetic energy.

Now let’s examine what is happening at the higher wavenumbers. For k > km
the turbulence is assumed to be in in near statistical equilibrium so we can drop
the time derivative on the left-hand-side and write approximately:

0 ≈ T − 2νk2E, k > km (14.12)

Integration from km to infinity yields:

0 ≈
∫ ∞

km
T (k, t)dk − 2ν

∫ ∞

km
E(k, t)dk (14.13)

But we already have observed that the integral of the non-linear spectral transfer,
T (k, t) over all wavenumbers is zero. Therefore

∫ ∞

km
T (k, t)dk = −

∫ km

0
T (k, t)dk = εk(km, t) (14.14)
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Also since by hypothesis we have assumed the Reynolds number to be so high that
there is relatively little dissipation for wavenumbers below km, it follows immedi-
ately that the last integral equation 14.13 is just approximately the dissipation;
i.e.,

2ν
∫ ∞

km
E(k, t)dk ≈ ε (14.15)

Thus the net spectral flux at our intermediate wavenumber, εk(km) is approx-
imately equal to the real dissipation of turbulence kinetic energy, ε. This is of
course a consequence of the fact that we have assumed no dissipation at the low
wavenumbers – just a net transfer out of the energy-containing eddies by the
non-linear interactions to ever smaller scales.

It is but a small extension of our arguments to realize that if our underlying
assumptions are correct (in particular the local equilibrium one), then these ar-
guments are exact at infinite Reynolds number; i.e. when l/ηKol → ∞. In this
limit, there can be no dissipation at the energy-containing scales, and no energy
at the dissipative scales. If the latter seems counter-intuitive, then don’t think of
the limit, just the limiting process where less and less energy is available at the
higher wavenumbers due to the vicous dissipation, and less and less dissipation at
the smaller wavenumbers. And of course it is the non-linear terms (represented
here by the spectral flux) that move energy from the low wavenumbers to the
high ones. Exactly how they do this is not completely understood, but clearly it
is through the non-linear triadic interactions.

One thing that is very important to note is that this whole line of argument
seems to imply that there would be a finite rate of dissipation, even if the viscosity
were identically zero (as opposed to simply getting smaller and smaller). This is
because the energy decay appears to be (and in this model is) controlled only
by the energetic scales of motion, and not be the viscous ones. The smallest
scales simply respond to the amount of energy being fed to them by the non-
linear interactions, and create whatever small velocity gradients are necessary to
dissipate the energy. In fact, this is commonly assumed to be true. (But we shall
see later that perhaps it is only true if the turbulence is statistically stationary,
meaning that there must also be a continuous source of energy for this model of
the dissipative scales to be true.)

14.2 Scaling the energy and dissipation ranges

From the consderations above we can infer two different scaling ‘laws’, one for high
wavenumbers (or the dissipative scales of motion) and one for low wavenumbers
(or the energetic scales of motion). This observation appears to have first been
made by Batchelor in the late 1940’s who synthesized the Kolmogorov ideas for the
dissipative scales with the von Kármán/Howarth for the enegetic ones. Batchelor’s
synthesis became the standard belief among turbulence theorists after his own
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book in the early 1950’s, and especially after the eloquent and simple presentation
by Tennekes and Lumley 1972. Indeed this is the ‘religion’ into which I was raised
and spent much of my career. As you shall see in the next few chapters (and
have had a few clues already) I’ve come to believe that maybe its time for a bit
of heresy if we are to move forward in our understanding. Like everything else in
this field, you can (and should) judge for yourselves. But be prepared for a bit
of fight if you see the same problems I do, especially from those who are fearful
that by having to revise their views they might have wasted their whole careers.
Of course they most likely did not, but most still worry about it any time any old
idea is challenged.

First, for the so-called energy-contaning range of scales we can see that the only
important parameters (at least in the limit of infinite l/ηKol) are u

2 and l = u3/ε.
(Recall that the latter is really l = u3/εk(km), but since we are at assuming very
high values of l/ηKol we use ε instead.) Thus on dimensional grounds alone we
would expect spectra to collapse at low wavenumbers when plotted as:

Ẽ(k̃) =
E(k)

u2l
(14.16)

where we have dropped for now the dependence on t. Ẽ(k̃) is a non-dimensional
spectrum and k̃ = kl is a non-dimensional wavenumber. This is the so-called
‘energy-range’ form of the spectrum and u2 and l are referred to as ‘energy-
containing range’ variables.

Exactly the same scaling can be applied to the one-dimensional spectra as well.
Figure 14.2 shows spectra for different wavenumbers plotted in this manner. The
particular plots shown actually use the measured spatial integral scales, L

(1)
1,1 and

L
(1)
2,2 instead of the pseudo-integral scale l, so the collapse is actually a bit better

than it would have been with l.3 (More will be said about this later.) The collapse
at low wavenumbers is quite impressive, and departure is gradual with increasing
wavenumber until the near exponential roll-off with increasing Reynolds number
as the ratio of l/ηKol increases. The collapse is, of course, not perfect since we are
not really at infinite Reynolds number (i.e., l/ηKol → ∞) and there are still small
(but finite) viscous effects felt at all wavenumbers.

Now consider what happens for high wavenumbers. For this region of the
spectrum dissipation dominates, and the entire equilibrium range is pretty much
described by only ε and ν. We can use these to write another non-dimensionalized
form of the spectrum as:

E+(k+) =
1

ν5/4ε1/4
E(k) (14.17)

Now E+(k+) is a non-dimensional spectrum of the dimensionless wavenumber,
k+ = k ηKol. This is the so-called (and famous) ‘Kolmogorov non-dimensional
spectrum’ and the spectrum is said to be normalized in Kolmogorov variables.

3The original Mylarski/Warhaft paper uses l = u3/ε instead.
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Figure 14.2: Plots of streamwise and lateral one-dimensional spectra measured
downstream of grid, plotted in energy-containing range variables (data of Myd-
larski and Warhaft 1996, from Gamard and George 2000).
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Figure 14.3: Plots of streamwise and lateral one-dimensional spectra measured
downstream of a grid, plotted in Kolmogorov variables (data of Mydlarski and
Warhaft 1996, from Gamard and George 2000).
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Figure 14.3 shows the same one-dimensional spectral data as shown in Fig-
ure 14.2, but this time plotted in Kolmogorov variables. Note the near collapse
at high wavenumbers, but the clear variation with l/ηKol at the low wavenum-
bers. Also clear from both figures is that there seems to be range of wavenumbers
between both extremes (say 1/l << k << 1/ηKol) where both the high and low
wavenumber scalings work pretty well. This, as we shall see below, is the ‘inertial
subrange’ where the famous Kolmogorov k−5/3 law will be seen to live.

14.2.1 The k−5/3 and r4/3 laws

One of the main reasons for the acceptance4 of Kolmogorov’s ideas about the
local equilibrium (and even universality) of the small scale (or high wavenumber)
turbulence was the success of the the inertial subrange prediction. As we shall see
below, a slight extension of the arguments above leads immediately to prediction
that the spectrum in the inertial subrange should vary as E(k) = αKol ε

2/3 k−5/3.
Similar considerations for the velocity structure functions yields 〈[ui(~x + ~r) −
ui(~x]

n〉 = β
(n)
i εn/3 rn/3. If it is assumed that the turbulence in this equilibrium

range is also universal (meaning it is the same in all flows and the Reynolds
number is high enough), then the coefficients are also presumed to be universal
constants. The third-order structure function is the most interesting of all, since
it can be shown directly from the dynamic equation for the second-order structure
function that the coefficient is exactly 4/5; i.e 〈[u(x+ r)− u(x)]3〉 = (4/5) ε r. It
is often forgotten that all of these results (if true at all) can be strictly true only
in the limit as l/ηKol → ∞.

Now the truth is that in spite of the enthusiasm for these ideas (actually
it’s more like religious fervor5), they seem to work really well only some of the
time, and not so well other times. One reason for this ‘not-so-great’ behavior is
completely obvious. The Reynolds number (i.e., l/ηKol, the ratio of integral scale
to Kolmogorov microscale) of many flows, especially those we generate in our
laboratories and computers, is not nearly at high enough for the theory to even
begin to apply. Thus in most flows we can measure or compute there really is no
inertial subrange in which εk ≈ ε. Nor sometimes is the Reynolds number even
high enough for there to be an equilibrium range at all! Even so, many researchers
still draw k−5/3 lines on their measured spectra, and seem to take comfort in the

4This didn’t happen immediately, and it really wasn’t until the tidal channel measurements
of Grant et al. reported in a famous 1962 Marseille turbulence meeting and the measurments in
a jet of M.M. Gibson 1963 that people began to generally accept them. Batchelor and others, of
course, believed them much earlier, probably because of their theoretical elegance, but without
much experimental confirmation. But even Kolmogorov himself was beginning to doubt and in
the same meeting produced another version that included intermittency. This latter has come
to be known as Kolmogorov 1963 or just K63, while his earlier theory is usually just referred to
as K41. It is K41 that is the focus of this chapter.

5I just saw the results of recent study that suggests the more poorly people actually under-
stand something and the less confident they are that the data actually support it, the more
intensely they will defend it. This happens in turbulence too.
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fact there is always a point of tangency.
But there are other reasons for the failure of the theory as well. First there seem

to be flows which march to a different drummer entirely, especially non-equilibrium
flows. We shall discuss some of these in the next chapter. And also there are flows
in which energy is being put into or taken out of the inertial subrange directly
by the mean flow or from other sources like buoyancy or energy production from
the mean flow by the Reynolds stresses. In these cases the spectral flux is not
constant but increases or decreases with wavenumber, so this at very least causes a
departure from the k−5/3-behavior, even if all the other assumptions are satisfied.
Sometimes even when this happens we can make a different spectral model, still
in part based on Kolmogorov’s ideas. We shall include an example in the next
section where finite Reynolds number effects can be in part accounted for.

And there seem to also be effects of internal intermittency; i.e., effects arising
from the fact that the dissipation is not uniformly distributed throughout the
flow but is sometimes highly concentrated into compact regions (like spaghetti or
lasagna). Actually it was Kolmogorov himself in 1962 who first built a model for
this based on the assumption that the dissipation was log-normally distributed.
There has been much work on this over the past four decades (see the book by
Frisch 1996, for example); and although it is important, we shall not discuss it
here since it will lead us too far from our story. The bottom line though is that
internal intermittency will cause a slight Reynolds number dependence in the
inertial subrange exponents (e.g., from −5/3 to −5/3 + γ(Re) where γ(Re) > 0.
Note that this is the opposite of the low Reynolds number effects considered later
which cause γ < 0).

14.2.2 Dimensional and physical analysis

In section 14.1.3 we argued for the existence of a spectral range, the inertial
subrange, in which for any wavenumber, km, the spectral flux, εk(km) was constant
and approximately equal to the actual rate of dissipation, ε. Moreover we argued
that in the limit of infinte Reynolds number that εk(km) = ε exactly. This was
an immediate consequence of our assumption that there was no dissipation at the
lower wavenumbers or in our inertial range, and therefore any energy dissipated
had to be passed through to the dissipative range.

Now look at the consequence for the spectrum E(k) in this inertial subrange.
The only parameter surviving in the equations is εk ≈ ε. There is effectively no
energy here, so u2 and l can not be important here; nor are there any viscous
effects so we can forget about ν also. This means that E(k) must be entirely
determined by k and ε alone, the latter ONLY because it is equal to the spectral
flux in the inertial range, εk. To emphasize this point we shall write εk below
in our derived result, and set it equal to ε only at the very end. (This may
seem rather silly to you now, but it will save you much agonizing later when you
try to figure out whether these theoretical results should apply to the flows you
encounter which don’t seem to behave this way – like in turbomachinery, or in
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geophysical fluid dynamics, or in flows with a mean shear, or even those ‘unusual’
flows that insist on being at finite Reynolds number :-).)

Now we apply the Buckingham-Π theorem which in its simplest form says the
number of independent dimensionless ratios possible is equal to the number of
parameters minus the number of dimensions. We have three parameters (E(k), k
and εk) and two dimensions (length and time). Therefore we know immediately
that Eaεbkk

c = const and must be dimensionless. Since the dimensions of E are
length3/time2, ε are length2/time3 and k is 1/length, clearly the constant can

be dimensionless only if E(k) ∝ ε
2/3
k k−5/3. Moreover if the spectrum itself is

‘assumed’ to be universal6, then so must be the coefficient, say αKol, which is why
it is commonly referred to as the universal Kolmogorov constant.7

Exercise Prove using dimensional analysis that if there is a range of scales in
physical space for which ε and r are the only parameters, then the nth-order
structure function must be given by 〈[ui(~x+ ~r)− ui(~x]

n〉 = β
(n)
i ε rn/3.

The results for the structure function and spectrum are generally assumed to
be equivalent, but I must confess I have a certain uneasiness about the latter.
My reason is that in spectral space we know that the spectral coefficients in non-
overlapping bands are uncorrelated. So when we make arguments about spectral
flux we can pretty much be sure that we are talking about something that cor-
responds to the mathematical decomposition of the equations, with energy being
transferred from the eigenfuntion at one wavenumber to that at another. It is not
so obviously true (at least to me) in structure function space, since we for sure can
not say that turbulence at one physical scale is uncorrelated with that at another.
But maybe I’m just being a bit pedantic here, since I’m not aware that anyone
else seems too worried about this. It does make a difference, however, when one
thinks about closure in LES (Large Eddy Simulations). In particular, can one
apply Kolmogorov’s ideas to small volumes of fluid below some cutoff size with
the same degree of confidence one could make a truncation in wavenumber space
above some wavenumber? My personal opinion is: probably not.

14.2.3 Deduction of k−5/3-range from asymptotic analysis

There is another way to deduce the existence of the k−5/3-range by working with
the scaling laws for low and high wavenumber spectra (equations 14.16 and 14.17).

6This is a nice hypothesis, but the rationale for it usually involves some sort of so-called
‘cascade’ model in which the turbulence loses its memory as the energy is passed through
interactions among progressively smaller triads of wavenumbers that are mostly the same size
(see Tennekes and Lumley, Chapter 8 for a really nice model). The problem comes in when there
is no cascade and there are interactions over all wavenumbers – as for example in non-stationary
flows.

7One might think after more than a half-century we could agree with some certainty what
the ‘universal value’ would be, but apparently not. Should make us think at bit. It just might
be a smoke signal that something is wrong.
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It has the advantage that it really is useful in highlighting that our deductions
are really valid only at very high Reynolds number, in fact infinite to be precise.
This approach was to the best of my knowledge first presented by Tennekes and
Lumley in their pioneering book “An First Course in Turbulence”, which even
though out-dated is still well well worth studying (but with proper scepticism
since many years have passed and our understanding has changed). What they
do particularly correctly is to recognize that both the inner and outer scaled
forms of the spectrum are valid everywhere if you retain the Reynolds number
dependence in the functional expressions, in their case R = l/ηKol where they used
l = u3/ε for their low wavenumber scaling. Thus both the following expressions
for E(k) are completely valid at all wavenumbers when written as:

E(k) = u2lE+(k+, R) (14.18)

E(k) = ν5/4ε1/4Ẽ(k̃, R) (14.19)

where k+ = k ηKol and k̃ = k l and R = l/ηKol. The dependence on the parameter
R inside the functional relationship is what makes the energy variables scaled spec-
trum start deviating at high wavenumbers, and vice versa for the high wavenumber
scaled spectrum. For example, in Figures 14.2 and 14.3, R (but defined using L
instead of l) is the parameter that labels the individual curves. Note how the
individual curves depart from collapse as R changes – at high wavenumbers when
scaled in energy-scaled variables, and at low in Kolmogorov variables. It is more
subtle to realize that they really don’t perfectly collapse at any wavenumber at
finite values of R, only approximately.

Now if the spectra have to be equal, so must their derivatives with respect to
wavenumber; i.e., using the chain-rule we can write:

dE

dk
= u2l

dẼ

dk̃

dk̃

dk
(14.20)

dE

dk
= ν5/4ε1/4

dE+

dk+

dk+

dk
(14.21)

But dk̃/dk = l and dk+/dk = ηKol. Hence the derivatives can be equal only if:

u2l2
dẼ

dk̃
= ν5/4ε1/4ηKol

dE+

dk+
(14.22)

We can eliminate u2 by substituting using ε = u3/l, which must be true, at least
at infinite Reynolds number. Doing this, using the definition of ηKol = (ν3/ε)1/4,
and multiplication of both sides by k8/3 yields after some rearrangement:

k̃8/3 dẼ(k̃, R

dk̃
= k+−8/3 dE+(k+, R)

dk+
(14.23)
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Now comes the ‘trick’ part, which is the same trick used to derive the log
or power law solutions to the boundary layer. We argue that in the limit as
R = l/ηKol → ∞, the ratio of k̃/k+ becomes undefined. Therefore in this limit,
both sides of equation 14.23 must equal the same constant, which for convenience
we define to be −(3/5) αKol; i.e.,

lim
R→∞

k̃8/3 dẼ(k̃, R

dk̃
= −3

5
αKol (14.24)

lim
R→∞

k+−8/3 dE+(k+, R)

dk+
= −3

5
αKol (14.25)

But since the right-hand side of both equations is a constant we can integrate
immediately to obtain:

Ẽ∞(k̃) = αKol k̃
−5/3 (14.26)

E+
∞(k+) = αKol k

+−5/3
(14.27)

Thus we have recovered the inertial subrange we obtained by dimensional anal-
ysis. But we now recognize that it is not just ‘in-between’ the energy-containing
range and the dissipative range, it is an extension of both of them! It is truly
a ‘matched’ layer (overlap region) that comes from stretching and matching two
solutions in the limit of infinite Reynolds number. Clearly, even if all theoreti-
cal assumptions are correct, we should expect to find αKol strictly constant and
universal in the real world only at very, very high Reynolds numbers. Also we
should expect spectra at low wavenumbers to collapse with u2 and l, BUT to only
collapse the low wavenumber range nearly perfectly at very, very high Reynolds
numbers. And the same for the Kolmogorov scaled spectra at high wavenumbers:
collapsing with increasing Reynolds number, but with only perfect collapse at very
very high Reynolds number.

In the next section we shall examine what happens if we relax this requirement
on the Reynolds number a bit.But before we do, let’s see what happens if we try
putting the high wavenumber and low wavenumber spectra together to form a
composite spectrum. The basic idea is to write one of them in the variables of the
other, multiply them together and divide by the common part (a trick I learned
from Chuck Van Atta, a highly respected turbulence experimentatlist at UC San
Diego, now deceased). For example, we can write the high wavenumber spectrum
using k+ = k̃/R. The common part of both the high and low wavenumber spectra
(in k̃ variables) would be just be equation 14.26 above. Thus our composite
spectrum in energy variables would just be:

Ẽcomposite(k̃, R) = Ẽ∞(k̃) E+
∞(k̃/R) [αKolk̃

−5/3]−1 (14.28)

Note the substitution of k̃/R for k+ inside the function E+. As the value of k̃
increases, the increasing viscous effects included in E+ will cut off the composite
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spectrum at very high wavenumbers, exactly like happens in nature. And the
higher the value of R, the higher the value of k̃ before this happens.

Of course, we could just as easily write the composite spectrum in high wavenum-
ber variables by substituting for k̃ using k+/R The result is:

E+
composite(k

+, R) = Ẽ∞(k+/R) E+
∞(k+) [αKolk

+−5/3
]−1 (14.29)

14.2.4 The inertial range at finite Reynolds numbers

review Gamard/George contribution here.

14.3 Models for the spectrum in the universal

equilibrium range

For the high wavenumber part of the spectrum there actually are many semi-
empirical models that have been developed. Several of these were put forth
shortly after World War II as scientists from many countries became aware of
Kolmogorov’s equilibrium range hypothesis. Among the most famous were those
due to Heisenburg (of uncertainty principle fame and Nobel Prize winner), On-
sager (another Nobel Prize winner), and Kovasznay (who came to Johns Hopkins
later as Professor and had an influence on my career as well).8 All of these models
have been well discussed in most other books, and none are particularly good,
so I won’t go into detail discussing them here. The exception is perhaps Heisen-
berg’s, which while not particularly useful for computing spectra has found a new
life in closing off truncated sets of equations using POD and other decomposition
techniques (see for example the book by Holmes, Lumley and Berkooz). Basically
what Heisenberg did was to use the small scales to create an eddy viscosity to
act on the strain rates of the larger scales. This same idea is the basis of modern
LES closures as well. One thing to note is that every closure model successfully
reproduced the k+−5/3

-range, but as we have noted this hardly can be used to
justify any model since it can be obtained from simple dimensional analysis alone.

Kovasznay model Even though Kovasznay’s model is not very good and
leads to a unphysical spectral cut-off (and negative spectra thereafter), it is a
good point to start our discussion of how one can build a high-wavenumber model
which has the right physical ideas in it. What Kovasnay suggested was that maybe
the spectral flux depended on just E(k) and k alone. If so the only dimensionally
correct possibility was

εk = γ k5/2 [E(k)]3/2 (14.30)

8Among the many things I remember him telling me was his comment after I congratulated
him on assuming the job of Department chairman. He responded in his Hungarian accent: ‘Beel,
you must understand that the most important task of the Department Chairman is to make
sure there is toilet paper in the johns.’ He always did have a unique perspective on life :-)
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where γ is a constant of proportionality. Now it is pretty straight-forward to
substitute this into equation 14.12 and solve for E(k). You indeed find a k−5/3

for small values of k, which then rolls off eventually as k−7. Unfortunately it then
actually gets to zero and goes negative, which is quite unphysical (since energy
can never be negative).

Exercise: Do exactly what is suggested above. Show that indeed in the low-
wavenumber limit (i.e., k → 0) you do recover the k−5/3-range and use this fact
to relate γ to αKol. Also show that the spectrum has a viscous range that rolls-off
as k−7 and a cut-off value beyond which the spectrum is negative.

Now sometimes people who do experiments like to show k−7 lines on their
spectral plots, but mostly it indicates that they really don’t know very much
about turbulence. You really should NEVER use this spectrum, since it clearly
has some pretty serious deficiencies, the negative value and cut-off being the worst.
BUT the idea is still useful to us, especially the idea that the spectral flux should
depend some way on the spectrum itself.

Pao-Corrsin model By the 1960’s hot-wires had improved enough that spec-
tral measurements could be made at wavenumbers approaching k ηKol ≈ 1. And
it was becoming clear that none of the spectral models were showing the right
behavior, which appear to be like an exponential roll-off. Yih-Ho (Mike) Pao9

and his thesis advisor (and my spiritual turbulence father) Stanley Corrsin real-
ized that the only way to get an exponential roll-off was to make the spectral flux
itself depend linearly on the spectrum. Given this then, on dimensional grounds
alone the spectral flux must be given by:

εk(k) = C ε1/3 k5/3 E(k) (14.31)

where C is a constant. Note the ε1/3 is exactly what is needed to make εk = ε in
the inertial subrange. Also it should be obvious that C has to be equal to α−1

Kol

for the same reason.
It is quite straightforward to plug this into equation 14.12 above and find the

so-called Pao-Corrsin spectrum which is given by:

E(k) = αKol k
−5/3 exp [−2αKol(k ηKol)

4/3/(4/3)] (14.32)

Note that integration constant coefficients have been evaluated by plugging equa-
tion 14.32 into the dissipation integral, then choosing them so it gives the correct
dissipation.

Exercise: Carry out the steps indicated above and derive the Pao-Corrsin spec-
trum.

9Mike Pao finished his Ph.D. at the Johns Hopkins University and took a position at Boeing
Research Lab in Seattle. When they decided to shut it down in the late 60’s Mike took a part
of the lab and formed what we now know as Flow Research and a few other spin-off companies.
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Exercise: Use the Pao-Corrsin model to compute the one-dimensional spectra
for the streamwise and cross-stream velocity components. Note that you of course
will have to assume isotropy and carry out a difficult integration with singularities.
If you are clever you can do the problem in cylindrical coordinates using and use
σdσ = kdk where k2 = k2

1 + σ2, etc.

Lin-Hill spectrum
In spite of the simplicity of its derivation, the Pao-Corrsin spectrum seemed at

first to be a great solution to the need for an empirical spectrum. I used it myself
in my Ph.D. dissertation to derive the spatial filtering imposed by the finite size
of an LDA scattering volume on spectral measurements. And my former students
Dan Ewing and Hussein Hussein have done the same when trying to calculate
the effects of hot-wires on derivative measurements. Nonetheless, it became clear
in the early 1980’s that there still was too much energy in the dissipative range.
The reason was apparently due to the fact that the roll-off of the spectrum itself
did not cut back the spectral flux fast enough. Moreover, spectra measured at
high Reynolds numbers were showing what looked like a small k−1-range after the
k−5/3-range, just before the exponential roll-off.

A simple solution was proposed by Lin and Hill which cut back the spectral
flux as the Kolmogorov microscale was approached:

εk(k) = αKol ε
1/3 k−5/3 [1 + (kηKol)

2/3]−1E(k) (14.33)

Note how the term in square brackets reduces the spectral flux as kηKol increases
towards unity.

It is again a simple matter of substitution and integration to show that the
spectrum is now given by:

E(k) = αKol ε
1/3 k−5/3[1+(kηKol)

2/3] exp {−2αKol[(kηKol)
4/3/(4/3) + (kηKol)

2/2]}
(14.34)

Once again the integration constants have been chosen so that the dissipation
integral gives the correct result.

Exercise Substitute the Lin-Hill model for the spectral flux into the local equi-
librium spectral equation and solve for E(k). Show that it satisfies the dissipation
if the integration constants are chosen appropriately.

14.4 A useful empirical low wavenumber spec-

tral model

There really are no known analytical solutions to the spectral energy equation, so
when one is needed we have to resort to empirical ones. For the low wavenumber
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spectral models, these are only a little more than just ‘fits’ to data, but they should
try to get the physics more or less right. For example, one popular choice for an
spectrum in the energy-containing range (originally proposed by von-Karman and
Howard 1938) is given by:

E(k) = [u2l]
C4k

4

[1 + (k/ke)2]17/6
(14.35)

For small k this will start off as k4, which is consistent with the controversial
Loitsianskii invariant.10 And for k >> ke it rolls off as k−5/3, which is consistent
with the upper limit of the energy scaled spectrum in the limit of infinite Reynolds
number, E+

∞(k+). The coefficient C4 and parameter, ke are usually chosen so the
the spectrum integrates to the all the kinetic energy, 3u2/2 and gives the right
value of αKol in the limit of large k; i.e.,

3

2
u2 =

∫ ∞

0
E∞(k, t)dk (14.36)

and u2lC4k
17/3
e = αKol. Obviously you will need to use the infinite Reynolds

number relationship ε = u3/l.

Exercise: Find the value of C4 and kel which satisfies these constraints. (Hint:
non-dimensionalize the wavenumber by ke, then you will discover the integral to
be one of the standard tabulated integral (a gamma-function actually). Then
solve for the values of kel and C4 that give you the right kinetic energy, 3u2/2,
and αKol. Try two values of αKol: 1.5 and 1.7. Do you see any problems with
this?)

Substitute equation 14.35 into the isotropic spectral relations and show that
the corresponding one-dimensional spectrum is given by:

F
(1)
1,1 (k1) =

C

[1 + (k1/ke)2]5/6
(14.37)

What are the values of C and kel for the two cases above? (Remember the one-
dimensional spectrum should only integrate to u2, and from the isotropic relation
between the three-dimensional spectrum function and the one-dimensional spec-
trum, the ‘one-dimensional’ Kolmogorov constant is (9/55) αKol.)

It is possible to generalize the result above into more variations. One used by
Wang and George, JFM 2003 (see their appendix) writes:

E(k) = [u2L]
Cp(kL)

p

[1 + (kL/keL)2]5/6+p/2]
(14.38)

Here L is the physical (or real integral scale) and the values of Cp and keL are
chosen so that the energy and integral scale spectral integrals give the correct

10Note that one could easily use different powers for the low wavenumber exponent (e.g. k2)
and modify the exponent for the denominator accordingly.)
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p 1 1.34 2 3 4
kpeakL 1.3630 1.2943 1.2272 1.1804 1.1570
keL 1.7597 1.4437 1.1203 0.8798 0.7468

kpeak/ke 0.7746 0.8965 1.0954 1.3416 1.5492
Cp 0.3229 0.4535 0.8455 2.2249 6.2528

Table 14.1: Spectral parameters as function of p

values. The same trick of non-dimensionalizing the wavenumber by ke allows
both integrals to be expressed exactly as beta-functions. Values of kpeakL, keL,
kpeak/ke and Cp are tabulated in Table 1 for p = 1, 1.34, 2, 3 and 4. Note
that this method of choosing the coefficients (i.e., insisting the integral scale be
correct as well as the energy) does not allow an independent determination of the
Kolmogorov ‘constant’ (as you probably figured out from the exercise above).

Finally, Gamard and George (2000 J. Flow, Turbulence and Combustion, see
the appendix) used a slightly modified version with near asympototics which ac-
tually allows for finite Reynolds number departures from the infinite Reynolds
number solutions; e.g.,

E(k, L/ηKol) = [u2L]
Cp

′(kL)p

[1 + (kL/keL)2]5/6+p/2−µ/2
(14.39)

where µ is a function of 1/(lnL/ηKol). As discussed in the next section they were
able to find the functional form by looking at the interdependence of the coeffi-
cients and the Reynolds number dependence ratio of εL/u3, then fit experimental
spectral data to determine the coefficients.

The whole point is that even an empirical expression like this can be of enor-
mous value in trying to understand some of the finer points of turbulence and
turbulence measurement. For example, Reynolds (Ann. Rev. Fluid Mech. 1976)
uses Equation 14.38 to examine how turbulence modeling constants depend on
the energy spectrum assumed. George et al. 1984 use a slightly different version
to obtain an excellent fit to the one-dimensional velocity and pressure spectra in
a jet mixing layer. Wänström et al. (2007 ASME paper and in her Ph.D. disserta-
tion) even used equation 14.35 to evaluate how the finite spatial dimensions of a
PIV interrogation volume affected the mean square value of different components
of the velocity. This worked in her case because the spatial filtering was cutting
off in the inertial subrange, so the viscous range was not important. The bottom
line is: don’t be too analytically lazy to be creative. It is amazing how much you
can learn from a simple empirical model thoughtfully applied.

fill in from Gamard and George 2000
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14.5 Some problems

Non-stationarity
Energy is mostly in the k−5/3 range
Appendices



Appendix A

Signal Processing

Foreword: This appendix was largely taken from the notes from courses on tur-
bulence measurement at the Danish Technical University and Chalmers developed
by Knud Erik Meyer, Peter B.V. Johansson and William K. George.

Most things that we measure are what we called random processes. In mea-
surements of fluid flows, turbulence is one example of very important random
component. To get useful results from measurements from a random process we
need to use statistical tools since we do not have much use for a collection of
instantaneous values alone. This is not always simple to do in practice, but the
underlying ideas are quite straightforward. This chapter is about the process of
getting from a physical quantity to a numerical estimate of the quantity. For more
reading on data from random processes, we recommend the very thorough book
by Bendat and Piersol [?]. Several special details related to flow measurements
are covered in [?].

A.1 Signals

We define a signal as the variation in time and space of any relevant physical
quantity occurring in a useful system or device. The signal itself is formed by
a series of measurements of the quantity. We can divide signals from random
processes into three different types:

Stationary: a signal whose statistical properties do not vary with time. This
means that it does not matter when you choose to do your measurement.
This is a fundamental assumption in most experiments and also an assump-
tion that we will do throughout this chapter.

Periodic: a signal that repeats itself after a finite amount of time. Common ex-
amples occur in rotating machinery. Sometimes such a signal can be treated
as though it were ‘locally’ stationary statistically by dividing each period
into small “time-slots”. Data from the same time-slot from many periods

301



302 APPENDIX A. SIGNAL PROCESSING

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

t [ms]

u 
[m

/s
]

Figure A.1: Hot-wire measurement of the main flow velocity component in a
turbulent flow behind a cylinder sampled at 100 kHz. Data from [?].

can then be treated as a stationary signal. Usually though, when doing sta-
tistical analysis, it is better to treat such signals by using only information
from exactly the same phase of the signal (called phase-averaging).

Transient: a signal that only exists for a finite amount of time, usually short. An
example could be a sudden close of a valve in a flow system. If the process
creating the signal is repeatable, the signal can sometimes be treated as a
periodic signal.

There can of course be signals that do not fall within these three types; e.g.,
signals that are not repeatable. For such a signal, many of the statistical tools
discussed in the present chapter are not applicable and it is only possible to average
between different realizations of the same experiment; i.e., the experiment must
be repeated over and over.

An example of a signal is shown in figure A.1. Even though the signal does
seem to have some repeating patterns, the signal has a strong random component
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Figure A.2: The measurement chain

due to flow turbulence. There are many questions we could try to answer using
the data shown in figure A.1. A few of them are:

• What is the mean velocity?

• Is the data record long enough for an accurate estimate?

• Can we estimate the turbulence intensity?

• How accurate will our estimate be?

• Is there a dominant frequency in the signal due to vortex shedding from the
cylinder? And if so, how can we estimate it?

• What would the optimal sampling frequency be for the questions above?

These questions and several more can be answered using the statistical tools that
we present in these appendices.

A.2 The measurement chain

Before we look at the statistical tools, we think it is instructive to understand
the basic elements of a measurement. Any measurement can be described by the
measurement chain shown in figure A.2. Here the measurement is divided into
three steps. The first step is a transducer (based on some physical principle) that
converts the physical quantity into another physical quantity suitable for further
signal processing. This is very often a voltage, but there are other possibilities as
well; e.g., a displacement or an optical signal. Then there is nearly always some
sort of signal conditioning. The converted signal might be amplified. It is also
both unavoidable and desirable to have some filtering of the signal. Sometimes this
is inherent to the transducer. Finally, before a measurement is usable, it should
be converted into a numerical value. This is accomplished by an analog-to-digital
(A/D) converter.

For a simple example: consider the measurement of the temperature in room
by a glass thermometer. The transducer is an enclosed amount of fluid whose
volume changes with temperature (e.g., ethanol). When the fluid (mostly in the
bulb) changes its volume to adjust to the temperature around it, this change is
amplified by letting the change in volume cause a thin column of the fluid to
rise or fall in a very thin pipe. The temperature can then read be comparing
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Figure A.3: Schematics of an analog-to-digital card

the height of the column to a calibrated scale placed along the thin pipe. The
conversion to a numerical value is done by you when you compare the column
height to the scale. If the thermometer is moved into a cold air stream from a
an open window, it will not instantly show the new temperature. You will need
to wait at least a few minutes to read the new temperature. It is inherent to
the construction of the thermometer that it filters out fast (or high frequency)
variations of the temperature, and only follows slower variations. Thus in signal
processing terminology, the thermometer is acting like a low-pass filter on the
temperature fluctuations, the net effect of which is to integrate out the faster
time-dependent variations. The amplification (sensitivity of column movement)
and the filtering properties have been fixed by the design of the thermometer,
and by your choice of the type of thermometer to use. You are also making some
decisions about the conversion to numerical values. You can choose to report the
temperature as 21◦C, as 21.4◦C or as 21.43◦C depending on number of divisions
on the scale and on your ability to interpolate between divisions.

In the example with the glass thermometer of the preceding section, the con-
version to a numerical value was the last step before the final result. A few decades
ago, a large part of the data processing was done by analog systems using spe-
cially built electrical circuits to evaluate quantities like mean values or frequency
content. Today, the strategy is usually to convert measurements to a digital form
as early as possible and perform data processing digitally. This is partly because
digital processing has become very cheap, but in many cases, it is also because
digital processing is much more flexible. In the following section, we will therefore
only consider digital data processing.
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When a measurement variable is converted into digital form, it is discretized
in three different ways:

• The value of the variable is discretized into a number of bit levels

• The variable is discretized in time by sampling

• The variable is discretized in space by selection of measurement points.

The consequences of this discretization will be discussed in the subsequent sec-
tions.

In any measurement, you will need to make some decisions regarding all three
elements in the measurements chain. We will cover the properties of different
transducers in the discussion of the different measurements techniques and we
will cover the use of filters in section G.2. In the next section we will examine
how an analog-to-digital converter works and what options are available.

A.3 Analog-to-digital conversion

If you are sampling data with a computer, most investigators today use an “analog-
to-digital card” (A/D card). A schematic of typical components is shown in
figure A.3. An A/D card will typically have several data channels so that it can
be connected to several transducers. Each channel has its own signal conditioning.
The conversion to a digital number will be only for a fixed voltage range; e.g.,
from 0.0 to 10.0V or from -5.0V to 5.0V. The signal from the transducer must
therefore be first amplified (or attenuated) to match this voltage range. Often an
offset value should be added to place the mean value near the middle of the range,
thereby minimizing the possibility of instantaneous values outside it.

Depending on what will be done with the data, an important element can be
an anti-aliasing filter. This is just a low-pass filter that removes high frequency
parts of the signal before digitization. This filter is essential for spectral analysis
of digital time-series data,and will be discussed in detail in section G.2. The
basic problem it prevents is called aliasing, which means that frequencies of the
digitized data show up at different frequencies than they should. Once data
has been sampled incorrectly and is aliased, it is nearly impossible to
de-alias or correct it; so proper choice (and use) of anti-aliasing filters can be
quite crucial to the success or failure of the experiment. Three considerations are
primary: First, do the filters roll-off (or cut-off) rapidly enough to really remove
the parts of the signal that might otherwise be aliased? Second, are the filters for
different channels phase-matched so their effect on all channels is the same? And
finally, are the phase changes at different frequencies that are introduced by the
filters acceptable. Since the more severe the cut-off, the more the phase changes
with frequency, generally some trade-offs must be made. A popular compromise
choice is the Bessel filter whose phase variation with frequency is linear, which
corresponds to a simple time delay.
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Figure A.4: Principle of an analog-to-digital converter

Most A/D cards only have one analog-to-digital converter (A/D converter).
The A/D converter is therefore connected (or multiplexed) to the data channels
through a multiplexer which only connects the A/D to one channel at a time.
This means that the channel signals are not converted at the same time, which
can create phase problems in the data analysis if they are to used together. It
is often desirable to take samples from all channels at exactly the same time.
Therefore some A/D cards have a “sample-and-hold” component for each channel
just before the multiplexer. At a trigger pulse or at a fixed frequency, each channel
voltage is stored, and then the stored channel voltages can be read one by one by
using the multiplexer and the A/D converter. But even sample-and-hold will not
fix the problem if the anti-aliasing filters are not properly phase-matched to each
other.

The principles of an A/D converter are illustrated in figure A.4. The A/D
converter determines the current signal voltage Vs by comparing the voltage to
voltage generated by a digital-to-analog converter (DAC). A common method is to
increment the D/A using a digital counter count from zero until the corresponding
voltage from DAC matches the signal voltage. A comparator will then send a
stop signal to the counter. The digital number in the counter will then be the
digital representation of the signal voltage. It is obvious that the conversion
takes some time and also that the more bits in the converted value (resolution of
voltage), the longer the time needed for the conversion. Some A/D converters use
more sophisticated and thus faster algorithms. The basic specification of an A/D
converter is the number of conversions per second and the number of bits in the
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bits levels resolution
8 28 = 256 0.4%
12 212 = 4096 0.02%
16 216 = 65536 0.002%

Table A.1: Common resolution of AD cards

converted digital value.
A number of properties should be evaluated when an A/D card or an A/D

converter is selected for measuring task:

Resolution: The resolution of the full range is determined by the number of
bits in the converted digital value. Common values are shown in table A.1.
Converters with as low as 10 bits or as high as 22 bits are also available.
Even conversion to a 8 bit number has a resolution better than 1% of full
range, and this is sometimes sufficient with proper pre-conditioning of the
signal (e.g., offset, amplification, etc.). A/D cards or converters with 16 bits
are quite affordable today and can be very convenient; e.g., for signal that
has small fluctuations around a large mean value. Sometimes a 16 bit card
can measure directly without as much signal conditioning as one with fewer
bits.

Sampling rate: General purpose 12 bit A/D cards are available with sampling
rates up to 1000 kHz; i.e., up to 1.000.000 data samples per second can be
obtained. If such an A/D card is connected to 5 channels, this means that
each channel with be sampled with 200 kHz. Dedicated 8 bit converters can
have sample rates up 1000 MHz. Cards may have local memory buffers and
can then only sample at the highest sample rates until the buffer is full.

Channels: As mentioned above, general purpose A/D cards multiplex several
channels into a single A/D converter. Channels can be “single ended” or
“differential”. Single ended channels use a common ground and therefore
only one wire is connected for each channel. This always introduces ground
loops in the system, which can substantially increase the electronic noise and
greatly complicate analysis. Much to be preferred are differential channels
which connect each pair of wires separately, so that all channels can be
electrically isolated from each other. A general purpose card often comes
with either 16 single ended channels or 8 differential channels. The sample-
and-hold option illustrated in figure A.3 will increase the cost of the card.

Sensitivity: The sensitivity is limited by the number of bits and the range over
which conversion is performed. When electronic noise is negligible, the ef-
fective ‘noise’ on the system is set by the volts/bit. This is the so-called
quantization noise. Since it appears on the digitized data as broadband
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noise, it must be insured to be well below any signal of interest. The im-
portant control factors here are the signal conditioning (offset, amplification
and filtering), and the general noise specifications of the A/D card.



Appendix B

Random Processes

Foreword: This section overlaps considerably (at this point at least) the material
in Chapter 8. It was largely taken from the notes from courses on turbulence mea-
surement at the Danish Technical University and Chalmers developed by Knud
Erik Meyer, Peter B.V. Johansson and William K. George.

Many processes we wish to measure are in fact random processes, meaning
that one can not guess exactly future values by looking at it past values. Some
processes really are deterministic (meaning that for fixed initial conditions and
boundary values the same answer will be obtained every time in the process), but
they behave chaotically and appear to be random. Turbulence is a good example of
this. But even processes that are not really random, appear to us as random when
we try to measure them because of our measurement (or computational) errors.
Thus just about everything we encounter can be treated as random processes.

We will call a variable measured from a random process a random variable. In
the following, we will denote the random variable as u, since we often measure a
velocity or velocity component. The variable could just as well be anything else,
like local pressure, temperature, etc. And it could be a function of time and space,
and most certainly which (of possibly many) experiments we performed. But to
make statistics we need to be able to deal with independent events. The easiest way
to understand this is to imagine doing the same experiment quite independently in
many different universes simultaneously. Then we could compare what happened
at exactly the same place at the same time in each universe, or ‘average’ the
results together. When we can compute such an average, the ‘true’ average, we
denote it by 〈u〉. Even though we have still not defined the ‘true average, we will
presume it to exist. In fact we shall see that the only way to get a ‘true’ average is
to have an infinite number of universes in which we are simultaneously performing
an identical experiment in each.

We will call our ith attempt to measure our random variable as the ith-realization,
and denote it as u(i). In the paragraphs below we shall assume each realization
to be statistically independent from all others. This is discussed in detail in sec-
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tion 2.4.3 of chapter 2, which provides a definition in terms of the joint probability
density function. But for our purposes the most important consequence is that
if two random variables, u(i) and u(j), are statistically independent, then are un-
correlated. This means that 〈u(i)u(j)〉 = 0 if i 6= j. (Note that the inverse is not
necessarily true; i.e., lack of correlation does not imply statistical independence.)

Usually the first thing we want to know about a random variable, u, is its
mean value, 〈u〉. This is really not a simple as it might seem, since the best we
can ever do is estimate the true mean value (which we have presumed to exist for
any random process). The reason is obvious if we look at the definition of the
ensemble mean (or true) mean (or average):

〈u〉 = lim
N→∞

1

N

N∑
i=1

u(i) (B.1)

Clearly one can never have an infinite number of independent universes (other
than in our imaginations). And in fact we can never even have an infinite number
in the one universe we have.

Your first thought is probably: Do we really need an infinite number? What’s
wrong with just taking a finite number, say UN given by:

UN =
1

N

N∑
i=1

u(i) (B.2)

Our problem is that this estimator (or ‘estimate of the mean) is itself a random
variable. This means that our every attempt to measure the mean will most
likely produce a different result. Obviously we need to know a couple of things
for measurements to make any sense. First, is there some reason to believe that
the mean of our estimates is close to the true mean of the underlying random
process? And second, is there hope that by making more estimates or for longer
times that we have a better chance of getting closer to the correct answer? These
two questions are usually asked this way: Is the estimator biased? And does
the estimator converge with increasing time or number of samples? The first
question is generally addressed by examining the bias, the second by examining
its variability. We shall examine both of these in the following subsections.

The problem is that in a real measurement, we never have the true mean, say
〈u〉, but can only use an estimator for the ensemble average based on a finite
number of realizations, say N ; i.e.,

UN =
1

N

N∑
i=1

u(i) (B.3)

Since u(i) is a random variable then UN is also a random variable. This means
that if we repeat the experiment, we should not expect to get two values of UN

that are exactly the same.
There are two important questions to investigate when an estimator is used.
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1. Does the average of our estimator give the right average; i.e., does UN →
〈u〉? If this is the case, the estimator is an unbiased estimator.

2. Does the estimator converge towards the true value as we take more and
more samples? We talk about convergence.

It is straightforward to see that UN is an unbiased estimator by comparing eqs. (B.10)
and (B.3). We can analyze the convergence by looking at the variability defined
as

ε2N =
(UN − 〈u〉)2

〈u〉2
. (B.4)

If we insert the definition of our estimator from eq. (B.3), we get that

ε2N =
1

N

var(u)

〈u〉2
=

1

N

σ2
u

〈u〉2
(B.5)

where the variance is estimated as

var(u) =
1

N

N∑
i=1

(u(i) − 〈u〉)2 (B.6)

and the standard deviation, σu is the square root of the variance.

Sometimes the variability is expressed using the turbulence intensity Tu =
σu/〈u〉 (here u is a velocity) as

εN =
1√
N

σu

〈u〉
=

Tu√
N
. (B.7)

Looking at eq. (B.5) or (B.7), we see that εN → 0 as N → ∞. We also see that
εN ∼ 1/

√
N ; i.e., if we increase the number of samples N four times, we should

expect the confidence interval between our estimated mean value and the true
mean value to get 50% smaller.

As discussed in detail in section 2.5 of chapter 2, εN is an estimator of the
standard deviation of UN (but only if the N samples are uncorrelated). Thus εN
is a measure of the uncertainty caused by the limited number of samples, and it
is therefore an important parameter for the design of an experiment.

B.1 Time-averaged statistics

As discussed in section A.1, most experiments are random processes designed to
be stationary.
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B.1.1 Time mean value

The time-averaged mean value for stationary signal is defined as

〈u〉 ≡ lim
T→∞

1

T

∫ T

0
u(t)dt. (B.8)

We have used the same symbol for the average as for the true average defined
above, since if the process is stationary, both time and ensemble averages are the
same. Like the true average though, this expression can not be evaluated in a
real experiment since we can not measure for an infinite time. So instead we are
forced to deal with an estimator for the time average, say UT , defined by:

UT ≡ 1

T

∫ T

0
u(t)dt. (B.9)

Also usually we will not represent the signal as analog (or continuous), but
instead use a discrete representation. The latter problem can be easily solved
by rewriting equation (B.8) into a discrete form using values u1, u2 . . . uN of u
sampled with a constant time between samples ∆t,

UT ≈ 1

N∆t

N∑
i=1

u(i)∆t =
1

N

N∑
i=1

u(i) (B.10)

since T = N∆t. Thus our discrete time average estimator looks exactly like our
estimator for independent realizations from before. Therefore we can approximate
the time average value this way, and it does not depend on the time between
samples, ∆t, as long as they are statistically independent.

In a real measurement, of course, we can only take a limited number of samples,
N . Moreover, our random process is a continuous process with its own memory
of how it was at an earlier time (since the flow at one time is linked to other times
by the governing equations). How then can any two samples be truly statistically
independent? Given this question, we obviously need to worry about the same
things we did before: Does our time average estimator converge? And does it
converge to the right value?

By comparing eqs. (B.8) and (B.9), it is easily seen that the estimator is
unbiased; i.e., UT → 〈u〉 as T → ∞. The question of convergence is addressed as
before by studying the variability, which is given in this case by:

ε2T =
var{UT}
〈u〉2

=
〈(UT − 〈u〉)2〉

〈u〉2
(B.11)

(Note that in practice we use UT instead of 〈u〉 in the integral above.)
After some effort involving multiple integrations, it can be shown that the

relative error in estimating the mean is given by:

εT =

√
2I

T

√
var{u}
〈u〉

=

√
2I

T

σu

〈u〉
(B.12)
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Figure B.1: Hot-wire measurement downstream of a grid.

where I is the integral time scale for the process defined by:

[u− 〈u〉]2I =
∫ ∞

0
[u(t)− 〈u〉][u(t+ τ)− 〈u〉]dτ (B.13)

Note that the integrand is the two-time correlation (or autocorrelation function)
for the process defined by:

R(τ) = u(t)u(t+ τ). (B.14)

Also the variance in the continuous formulation can be estimated using its finite
time estimator as:

varT{u} =
1

T

∫ T

0
[u(t)− 〈u〉]2dt. (B.15)

Comparing equation B.12 to equation (B.7) it can be seen that T/2I corre-
sponds to the N of our independent samples above. This means that

• To have uncorrelated measurements, the time between samples should be at
least two times the integral time scale (T/N ≥ 2I).

• If you have measured with a time between samples that is shorter than two
times the integral time scale, you can estimate the standard deviation of the
mean value using eq. (B.12).

• Said in another way, you will not get better convergence for the estimate of
the mean value by sampling faster than one sample every 2I.

Example: Autocorrelation from hot-wire measurement

Figure B.1 shows a hot-wire measurement made downstream of a grid in a wind
tunnel. The data is taken with a single wire probe with a sampling frequency of
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50 kHz. The total data record is 2.6 seconds long (131072 samples). The first
10 ms of the record is shown in figure B.1(a). The mean value of the total record
is 〈u〉 = 30.23 m/s (here assumed to be the true mean value) and this is indicated
as a horizontal dotted line in the figure. Figure B.1(b) shows the autocorrelation
found by evaluating eq. (B.14) for the total data record. By integrating the
autocorrelation, the integral time scale is found to be I = 0.20 ms. This is
indicated in figure B.1(b) as a dashed rectangle with the same area as the area
below the autocorrelation curve. In figure B.1(a) samples taken with a distance
of 2I = 0.4 ms is shown with the symbol ◦. The 10 ms record of the flow therefore
corresponds to 25 statistically independent samples. The standard deviation of
u can be calculated from the data to be σu = 1.24 m/s and relative value of the
standard deviation of the mean value can therefore be estimated using eq. (B.12)
as

σUT

〈u〉
= εT =

√
2I

T

σu

〈u〉
=

√
2 · 0.20ms

10ms

1.24m/s

30.23m/s
= 0.8%

or a value of σUT
= 0.25 m/s. The actual mean value of the sample shown in

figure B.1(a) is UT = 30.06 m/s or a deviation from 〈u〉 of 0.6%. The mean value
of the first 25 samples marked with the symbol ◦ figure B.1(a) is UN = 29.98 m/s
or a deviation from 〈u〉 of 0.8%. Both of these deviations are clearly with in the
statistical variation indicated by the value of εT .

B.1.2 Higher moments

We often want to characterize our data using higher order moments. A higher
moment is defined as

〈u′n〉 = lim
T→∞

1

T

∫ T

0
(u′(t))

2
dt (B.16)

where we have defined the fluctuation, u′(t), to be;

u′(t) = u(t)− 〈u〉 (B.17)

Using our previous results, we can get an error estimate for an arbitrary mo-
ment by substituting u′ with u′n and N with T/2I in eq. (B.5) to obtain

ε2u′n =
2I

T

var(u′n)

〈u′n〉2
=

2I

T

〈u′2n〉 − 〈u′n〉2

〈u′n〉2
(B.18)

For the second moment (the variance of u) we get

ε2u′2 =
2I

T

(
〈u′4〉

(〈u′2〉)2
− 1

)
(B.19)

Thus in order to estimate the error of the second moment, we need to know the
fourth! For the third moment (the skewness) we get

ε2u′3 =
2I

T

(
〈u′6〉

(〈u′3〉)2
− 1

)
(B.20)
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For the fourth moment (the flatness or sometimes called the kurtosis) the error
estimate becomes

ε2u′4 =
2I

T

(
〈u′8〉
〈u′4〉2

− 1

)
(B.21)

Equations (B.19–B.21) are very hard to compute from measured data. There-
fore it is customary to estimate these using the approximation that the random
process can take an analytical form. The most common form used in turbulence
is to assume the process to be Gaussian. A random process is Gaussian if the
probability density function p(u′) can be expressed as

p(u′) =
1

2πσ
exp

(
− u′2

2σ2

)
(B.22)

where σ is the standard deviation, σ =
√
〈u′2〉.

Using the probability density function, the moments can be alternatively de-
fined as

〈u′n〉 =
∫ ∞

−∞
u′np(u′)du′ (B.23)

This can be used together with the definition of the Gaussian to obtain a simple
analytical form for the error of each moment. For a Gaussian process, the odd
moments like the skewness is identical zero, so one can only obtain numbers for
the second and forth moments

ε2u′2,G =
4I

T
(B.24)

ε2u′4,G =
22I

T
(B.25)

Example: Deciding sampling times

We want to measure in a turbulent flow and preliminary measurements have
estimated a turbulence intensity of Tu = 20% and an integral time scale of I =
1.5 ms. We want to measure the mean velocity with a an error not larger than
1%.

If we assume the errors to be distributed according to a Gaussian random
process, a 1% error corresponds to two times the standard deviation and is some-
times expressed as a 95% confidence interval. We therefore want to estimate the
necessary sample times for the standard deviation of the estimated mean value to
be εT = 0.5%. Using equations (B.7) and (B.12) we find the sample time to be

T =
2I(Tu)2

εT
=

2 · 1.5 · 10−3 s · 0.22

0.0052
= 4.8 s

corresponding to an effective number of samples of

N =
T

2I
=

4.8 s

2 · 1.5 · 10−3 s
= 1600
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Statistically it does not matter if we take more samples during the 4.8 seconds of
sampling. The optimal sampling rate fs can therefore be considered to be

fs =
N

T
=

1600

4.8 s
= 333Hz

We can use eqs. (B.24) and (B.25) to estimate the uncertainty for the higher
moments for a sample time of T = 4.8 s. Using a factor of two on the standard
deviations corresponding to a 95% confidence interval, we find the uncertainty
on the second moment (the variance) to be 7% and for the fourth moment to be
17%. To obtain one percent uncertainty on the fourth moment, we must have a
total sampling time equal to at least 1320 seconds (22 minutes!) corresponding
to 1,750,000 uncorrelated samples!



Appendix C

Fourier analysis of time varying
signals

Foreword: This appendix was largely taken from the notes from courses on tur-
bulence measurement at the Danish Technical University and Chalmers developed
by Knud Erik Meyer, Peter B.V. Johansson and William K. George.

There are two ways of looking at how a signal evolves in time. One way is
to look at the signal as a sequence of events (e.g., opening and closing a valve).
Another way is to characterize the signal in terms of frequencies being present.
An example is how we perceive sound. If we are listening to somebody talking, we
understand words by listening to the sequences of different sounds in the words.
However, the single sounds in the words (corresponding to letters in written words)
are characterized by the combinations of frequencies in the sound – which is a
result of how we form the sound with our mouth. It is also interesting that we
are able to recognize people we know only by a small sample of their voice. We
simply recognize the combination of frequencies that characterize their voice.

The human ear is a sophisticated analyzer of frequencies in a sound signal.
The sound sensing organ has about 15 000 “hair cells” that each are tuned to a
specific frequency. The brain therefore receives a measurement of the content of
each frequency present in a sound. When we want to do a similar analysis of a
measured signal we usually use Fourier analysis. This is an important tool to
characterize data from a measurement from a turbulent flow, but it is also an
important part of many optical measurement systems where the raw transducer
signal is a frequency. The frequency is often determined by a Fourier analysis. In
this section we focus on Fourier analysis in time, but it can just as well be done
in space (e.g., if instantaneous data along a line is available) .
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C.1 Fourier series

If we have a periodic signal (i.e., a signal that repeats itself every time interval T )
it can be developed in a Fourier series as:

u(t) = A0 +
∞∑
n=1

An cos
(
2πn

t

T

)
+

∞∑
n=1

Bn sin
(
2πn

t

T

)
(C.1)

The frequencies present in this decomposition, fn = n/T , are harmonics (or in-
teger multiples) of the fundamental frequency 1/T . The Fourier coefficients, An

and Bn, are given by:

An =
1

T

∫ T/2

−T/2
u(t) cos

(
2πn

t

T

)
dt (C.2)

Bn =
1

T

∫ T/2

−T/2
u(t) sin

(
2πn

t

T

)
dt (C.3)

Example: Square wave

Consider the square wave signal shown in figure C.1. Show that it can be
reconstructed using the following expression:

u(t) =
4

π

∞∑
n=1,3,5...

1

n
sin

(
2πn

t

T

)
(C.4)

Figure C.1 illustrates that for n = 1 (dashed curve) the result is just a sine curve.
As the Fourier components for increasing values of n are added, however, the
resulting curve approaches the square wave signal.

It is sometimes convenient to use a complex notation in the formulation of
Fourier series. We can define a complex coefficient as Cn = An − iBn and rewrite
equations (C.2–C.3) as:

Cn =
1

T

∫ T/2

−T/2
u(t)e−i2πnt/Tdt (C.5)

The ratio between the real and imaginary values can provide phase information
about the signal.

It is also convenient to introduce negative values of n. This corresponds to
negative frequencies (which can be thought of as waves going backwards in time).
Then the values are symmetric in the sense that A(−n) = A(n) and B(−n) =
B(n). The use of negative values of n means that the reconstruction formula now
can be written very compactly as

u(t) =
∞∑

n=−∞
Cne

+i2πnt/T (C.6)
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Figure C.1: Reconstruction of square wave signal using Fourier series
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C.2 Fourier transform

The Fourier series discussed in the previous section only applies for a periodic
deterministic signal; i.e., a signal that is exactly the same from period to period.
But sometimes we must deal with a single pulse or even a random processes. We
therefore need to be able to decompose a signal that is not repeatable. We can
overcome this by using the Fourier transform. This can be viewed as a Fourier
series in the limit for which the period, T becomes infinite, and the correspond-
ing values of n/T become a continuous range of frequencies f , meaning that all
frequencies are now possible.

We define then, the Fourier transform of the function u(t) as:

û(f) =
∫ ∞

−∞
e−i2πftu(t)dt (C.7)

These are really the continuous counterpart to the Fourier series coefficients of a
periodic signal, and can similarly be used to reconstruct the original signal. We
call this reconstruction the inverse Fourier transform and define it as:

u(t) =
∫ ∞

−∞
e+i2πftû(f)df (C.8)

As in the complex Fourier series, we use negative values of the frequency f .
An implicit assumption is that the integrals converge. This is, of course, never

true for a stationary random process, so we need to use the idea of generalized
functions to insure that they do. These are discussed in detail in section E, and will
be important when we consider stationary random processes. In practice, however,
these Fourier integrals exist for all experimental signals, sincethe time domain over
which the integral can be performed is finite. Some of the consequences of this
truncation in time are discussed under the sections about filtering and windows
below.

C.3 Convolution

A convolution is an operation on two functions f and g defined as:

f ⊗ g =
∫ ∞

−∞
f(τ)g(t− τ)dτ (C.9)

A convolution is an integral that expresses the amount of overlap of one function
g as it is shifted over another function f . It therefore “blends” one function with
another. We have already seen one example of a convolution in the autocorrelation
function defined in section 8.2. The use of windows discussed in the next section
can also conveniently be expressed in terms of convolutions.

For the Fourier transform, some important relations for convolutions exist.
Here, we will let F denote the Fourier transform and F−1 denote the inverse
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Fourier transform. The most important results are:

F [f ⊗ g] = F [f ]F [g] (C.10)

F(f g) = F [f ]⊗F(g) (C.11)

F−1[F(f)F(g)] = f ⊗ g (C.12)

F−1[F(f)⊗F(g)] = f g (C.13)

In words, this means that the convolution of two functions in the time space
corresponds to the product of the transformed functions in the frequency space –
and vice versa.

C.4 The finite Fourier transform

In any application of Fourier analysis we are always limited by the length of the
time record, T . This means that the most we can expect to be able to transform
is the finite time transform given by:

ûiT (f) =
∫ T/2

−T/2
e−i2πftu(t)dt (C.14)

where for convenience we have written it over the symmetric interval in time
(−T/2, T/2).

Now with a little thought, it is clear that we are actually taking the Fourier
transform of the product of two functions, the correlation (the part we want) plus
the window function; i.e.,

ûiT (f) = F [u(t)wT (t)] =
∫ ∞

−∞
e−i2πftu(t)wT (t)dt (C.15)

where wT (τ) is defined by:

1, −T/2 ≤ τ ≤ T/2

wT (τ) = (C.16)

0, |τ | > T/2

From the results of the preceding section we immediately recognize that the
Fourier transform we seek is the convolution of the true Fourier transform with
the Fourier transform of the window function; i.e,,

ûiT (f) = ûi(f)⊗ ŵT (f)

=
∫ ∞

−∞
û(f − f ′)ŵT (f

′)df ′ (C.17)

=
∫ ∞

−∞
û(f ′)ŵT (f − f ′)df ′
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Obviously the Fourier transform at a given frequency is contaminated by the
Fourier transform at all other frequencies, the exact amount depending on the
window function, the Fourier transform of which is given by:

ŴT (f) = T
sin(πfT )

πfT
(C.18)

(See if you can show this.) The so-called side-lobes have their zeros at frequency
which are multiples of 1/T and roll-off only as f−1; moreover, every other side-lobe
is negative.

We shall see later that windows play a very important role in spectral anal-
ysis. Unfortunately their importance is poorly understood by many (even texts)
which erroneously confuse Fourier transforms and Fourier series. For example, if
you simply imagine a finite piece of record to be repeated periodically, you will
completely overlook the fact that your spectral analysis has been corrupted by
the finite time window.

C.5 The shift theorem

Consider a signal, u(t), which is shifted in time by amount ∆ to obtain u(t+∆).
Sometimes this is unavoidable; e.g., in a multichannel A/D converter without
simultaneous sample-and-hold where the channels are scanned sequentially. And
sometimes we introduce time lags deliberately; for example, to maximize the
correlation with another signal. Or as another example, in the next section it will
be seen to be convenient to consider the Fourier transform over the interval (0, T )
instead of (−T/2, T/2).

It is straightforward to show that time-lags introduce a phase-shift on the
Fourier transform which is linear with frequency. From the definition of the Fourier
transform, it follows immediately that:

F [u(t+∆)] =
∫ ∞

−∞
e−i2πftu(t+∆)dt (C.19)

But we can define x = t+∆ and transform the integral to obtain:

F [u(t+∆)] =
∫ ∞

−∞
e−i2πf(x−∆)u(x)dx

= e+i2π∆
∫ ∞

−∞
e−i2πfxu(x)dx

= e+i2π∆F [u(x)] = e+i2π∆û(f) (C.20)

Note that F [u(x)] = F [u(t)] since both t and x are just dummy integration
variables in the integrals.

If we look at the phase of the Fourier transform, we see immediately that our
time displacement corresponds to a phase shift which is linear with frequency;
that is:

φshifted(f) = tan−1
[
Im

Re

]
= φunshifted + 2πf∆ (C.21)
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It is easy to show the the inverse is also true: a linear phase shift corresponds to
a simple time delay in the signal. This can sometimes be used to great advantage
in designing measurement systems.
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Appendix D

Digital Fourier transforms

Foreword: This appendix was largely taken from the notes from courses on tur-
bulence measurement at the Danish Technical University and Chalmers developed
by Knud Erik Meyer, Peter B.V. Johansson and William K. George.

D.1 Aliasing of periodically sampled data

Before considering what happens if we digitally sample an signal for a finite length
time interval, let’s consider first what happens if we digitally sample an infinitely
long record. The easiest way to think about this is to make a simple model
for the analog-to-digital conversion process in which the digitally sampled signal
is treated as the limit of a continuously varying one. Although this involves
generalized functions (which are treated in detail in section E), the only result we
need to use here is the familiar delta-function, δ(t) which is infinite at t = 0, zero
everwhere else, and in the limit as ε → 0 has the following properties:∫ +ε

−ε
δ(t)dt = 1 (D.1)∫ +ε

−ε
f(t)δ(t)dt = f(0) (D.2)∫ +ε

−ε
f(t)δ(t− to)dt = f(to) (D.3)

Using these we can define a sampling function, say g(t) as:

g(t) = ∆t
∞∑

n=−∞
δ(t− n∆t) (D.4)

where ∆t is the distance between samples. (Note that multiplication by ∆t makes
g(t) dimensionless, since the delta-function of time has dimensions of inverse time.)
Now we can represent our ‘sampled’ signal as:

us(t) = u(t)g(t) (D.5)
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It is easy to see that this has all of the properties of a sampled time series.
For example, the time average over the interval from 0 to T is given by:

UT =
1

T

∫ T

0
us(t)dt =

1

T

∫ T

0
u(t)

{
∆t

∞∑
n=−∞

δ(t− n∆t)

}
dt

=
1

N

N∑
n=1

u(n∆t) (D.6)

since T = N∆t is the record length. But this is exactly the digital approximation
given by equation B.10.

Similarly we can examine the Fourier transform of our digitally sampled signal
which is given by:

F [us(t)] =
∫ ∞

−∞
e−i2πftus(t)dt

=
∫ ∞

−∞
e−i2πftu(t)g(t)dt

(D.7)

Since the right-hand side is the Fourier transform of the product of two functions,
we know immediately that the result is the convolution of the Fourier transform
of each function individually; i.e.,

F [us(t)] = {F [u(t)]⊗F [g(t)]} =
∫ ∞

−∞
û(f − f ′)ĝ(f ′)df ′ (D.8)

where as shown below, ĝ(f) is given by:

ĝ(f) =
∞∑

n=−∞
δ(f − n/∆t) : (D.9)

Proof of equation D.9 First note that g(t) is periodic, so it can be represented
by a Fourier series. If we center the delta function over one period in the interval
(−∆t/2,∆t/2), the Fourier series coefficients are given by;

Cm =
1

∆t

∫ ∆t/2

−∆t/2
e−i2πmt/∆t∆tδ(t)dt = 1 (D.10)

Thus the Fourier series representation of g(t)is given by:

g(t) =
∞∑

m=−∞
e+i2πmt/∆t (D.11)

Now take the Fourier transform, term by term, of this Fourier series representation
which is given by:

F
[ ∞∑
m=−∞

e+i2πmt/∆t

]
=

∞∑
m=−∞

∫ ∞

−∞
e−i2πfte+i2πmt/∆tdt

=
∞∑

m=−∞
δ(f −m/∆t)

(D.12)
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Figure D.1: Relation between aliasing and sample frequency fs = 1/∆t

It follows immediately that the Fourier transform of our sampled signal is given
by:

F [us(t)] =
∫ ∞

−∞
û(f − f ′)ĝ(f ′)df ′

=
∞∑

m=−∞

∫ ∞

−∞
û(f − f ′)δ(f ′ −m/∆t)df

=
∞∑

m=−∞
û(f −m/∆t) (D.13)

Thus the Fourier transform of our sampled signal is an infinitely repeated version
of the Fourier transform of the original signal.

This is illustrated in figure D.1. We will assume that figure D.1(a) shows the
real Fourier transform of our signal. Note that the signal is symmetric around
f = 0 as we have just discussed. The result of a discrete Fourier transform
with data sampled with a sample frequency fs that is three times the maximum
frequency present in the signal is shown in figure D.1(b). We see that the result
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is repeated with a period of fs. If we instead use a sample frequency that is
only 1.5 times the maximum frequency in the signal, we get the result shown in
figure D.1(c). The result from the true distribution is still repeated with a period
of fs, but there now is an overlap between the periods. The result (shown as a
thick line) is an incorrect (or aliased) distribution in the regions of overlap.

This is an important problem called aliasing. If we sample too slowly, the
results get corrupted – lower frequencies get a contribution from higher frequencies
and vice versa. This is also illustrated in figure D.3 of section D.3. The sine
signal has period frequency of 0.7 the sampling frequency. However, two other
sine signals with period time of 0.3 and 1.3 of sampling frequency, respectively,
also match the data samples. After sampling, there is no way of determining what
the real signal really was.

The key to avoiding aliasing is to satisfy the so-called “Nyquist criterion”:
A signal must be sampled with a sample rate that is at least twice the maximum
frequency present in the signal. In figure D.3 this means that only the slowest
signal (period frequency of 0.3 time the sampling rate) would be correctly sampled
with the illustrated sampling; i.e., there is no sine function with a frequency
lower than 0.3 that matches the sampled data. You may think that you are
only interested in the lower frequencies and therefore do not have to worry about
higher frequencies. This is wrong. If you proceed this way it is quite likely that
the lower frequencies will be corrupted by the higher frequencies! Worse, you will
have little chance of detecting the problem and you will have no way of fixing
the problem after the data is taken. You may argue that you don’t know what
the highest frequencies are in your signal. There is always some noise that we
cannot control. Well, it is your task to ensure this is not a problem! This is the
reason why most A/D cards have a low pass filter before the sampling and the
A/D conversion. To be safe, the filter frequency should be 3–5 times lower than
the sampling frequency. We will have a closer look on filters in section G.2.

D.2 The Discrete Fourier transform

As in section B.1, the problem is both that the signal is only known at discrete
points and that we only will have data for a limited time period. Now we will look
at how a discrete formulation can be made. First we have to change eqs. (C.7) to
a finite time estimate,

ûT (f) =
∫ T

0
e−i2πftu(t)dt (D.14)

Note that we have deliberately shifted the time axis by +T/2. This introduces
a linear phase shift equivalent to multiplying the Fourier coefficients by e+iπfT

compared to the symmetric finite transform of the previous chapter. Generally
this will not present a problem, but should not be ignored.

This is not exactly what we want, since we have sampled the velocity at discrete
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times. We really have

un = u(n∆t) n = 0, 1, 2, . . . , N − 1 (D.15)

Using the basic definitions of integral calculus, we can discretize the integral of
equation (D.14) as:

ûT (f) =
N−1∑
n=0

e−i2πfn∆tun∆t (D.16)

N is the total number of samples and T = N∆t is the total sample time. The time
between samples, ∆t, is given by the sampling frequency, ∆t = 1/fs = T/N . This
is, of course, an approximation which becomes exact in the limit as the number
of points, N , becomes infinite and as the interval between them, ∆t, goes to zero.

Now since we only have N data points, we can only calculate N independent
Fourier coefficients. In fact, since we are in the complex domain, we can only
calculate N/2, since the real and imaginary parts are independent of each other.
So we might as well pick the frequencies for which we will evaluate the sum of
equation D.16 for maximum convenience. For almost all applications this turns
out to be integer multiples of the inverse record length; i.e.,

fm =
m

T
=

m

N∆t
m = 0, 1, 2, . . . , N − 1 (D.17)

Substituting this into equation D.16 yields our discretized Fourier transform as:

ûT (fm) = T

{
1

N

N−1∑
n=0

e−i2πmn/Nun

}
m = 0, 1, 2, . . . , N − 1 (D.18)

This equation can be evaluated numerically for each of the frequencies fm defined
in eq. (D.17). The Fourier coefficients, ûT (fm), found from eq. (D.18) are complex
numbers. For future reference note they negative frequencies are mapped into
fm = N − 1, N − 2, N − 3, N −m instead of at negative values of m, as illustrated
in Figure D.1.

It is easy to show the original time series data points can be recovered by using
the inverse discrete Fourier transform:

un =
1

T

{
N−1∑
m=0

e+i2πmn/N ûT (fm)

}
(D.19)

The real and imaginary value of at frequency fm corresponds to the coefficients
of the cosine and sine parts respectively, in a reconstruction of the signal. In fact if
we divide ûT (fm) by T, then it is exactly the Fourier series coefficient that would
represent a periodic signal of period T , but equal to our piece of the record over
the interval 0, T . Thus the algorithms for treating a discretized periodic signal and
a discretized piece of an infinitely long signal are the same. Because of this the
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terms in brackets of equations D.18 and D.19 are so important they are usually
written as a pair like this:

ûm =
1

N

N−1∑
n=0

e−i2πmn/Nun (D.20)

un =
N−1∑
m=0

e+i2πmn/N ûk (D.21)

Equations D.20 and D.21 are computationally very demanding since they re-
quire N2 operations. Fortunately if N is an integer power of 2, 3 or 5, there is an
algorithm called the “Fast Fourier Transform” (or simply the FFT) that is compu-
tationally very efficient and requires only N lnN operations.1 The FFT algorithm
is available in many software packages for numerical calculations. Hardware so-
lutions (dedicated electronic devices) are also available and are used in several
measurement instruments.
Example: Look up the FFT implementation in MATLAB. Note that MATLAB
uses a slightly different definition with the indices n and m running from 1 to
N instead of from 0 to N − 1, with corresponding different arguments inside the
summations. A change of variables m′ = m+1 and n′ = n+1 in eq. (D.18) yields
exactly the same definition as used in the MATLAB implementation.

D.3 An Example

Let us try to do an FFT analysis on a very simple signal: we will sample a cosine
function with 10 samples per period and we will use N = 32 samples and put them
into a vector u. The samples are illustrated with the symbol ◦ in figure D.2(a).
Assuming a unit time between samples, the frequency in the signal is f = 0.1.
The theoretical result in the frequency domain should therefore be a single peak
at f = 0.1 and zero value of f everywhere else. The result of running an FFT
on these 32 samples is shown in figure D.2(b) as the magnitude of û(f). The
MATLAB command used for the calculation is simply uf=abs(fft(u)). The
values of the frequency are found using equatiob (D.17) by dividing the vector
index with N . The result is probably a bit surprising. We do get a clear peak
at the signal frequency f = 0.1. However, the result also show some frequency
content at all other frequencies. Furthermore we see that the result is perfectly
symmetric around f = 0.5 and that we therefore also have a clear peak at f = 0.9.

To understand the symmetry, remember that we introduced the concept of
negative frequencies in the definition of the Fourier Transform. If we instead
calculated the frequencies using an index range from −N/2 to N/2, we would
have gotten a result that was symmetric around f = 0. Actually, we can evaluate
eq. (D.18) for any value of m. However, since cosine and sine give the same values

1See [?] for more details on the FFT.
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Figure D.2: FFT on sampled cosine signal



332 APPENDIX D. DIGITAL FOURIER TRANSFORMS

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t

Figure D.3: Sine signal (solid curve) with frequency 0.7 sampled at unit time
between samples – sine curves with frequencies 0.3 and 1.3 also matches sampled
data.

for arguments that have a difference of 2π, the result will repeat itself every time
m is increased with N .

Returning to figure D.2(b), we see that the reason why we get a symmetry
around f = 0.5 is that we see the real, positive frequencies in the region from
f = 0 to f = 0.5 and then the negative frequencies from the next period of the
result (repeated with fs = 1) in the region from f = 0.5 to f = 1. The symmetric
part is only there because it is a technical convenient way of doing the calculations.
When we present the results, we therefore only need to present the first half of
the result corresponding to “positive” frequencies.



Appendix E

Generalized functions

In Appendix C we defined the Fourier transform and Inverse Fourier Transform
by equations C.7 and C.8 respectively. The Fourier coefficients û(t), of the signal,
u(t) were given by

û(t) =
∫ ∞

−∞
e−i2πftu(t)dt (E.1)

From them the original signal can be reconstructed using inverse Fourier transform
by:

u(t) =
∫ ∞

−∞
e+i2πftû(t)df (E.2)

Now if you have studied Fourier transforms in an applied math course, you have
probably already spotted one potential problem: the integrals of equations E.1
and E.2 may not even exist — at least in the ordinary sense. Figure E.1 illustrates
the problem. For example, a stationary random process has no bounds (unless we
arbitrarily truncate it over some interval). Moreover, since its statistical properties
are independent of origin, the fluctuations simply go on forever. Thus our random
signal is really rather nasty, mathematically speaking, and most certainly the
integrals in the ordinary sense become unbounded.

There are, of course, many other kinds of signals for which the integrals do
not converge either, some of which are of great interest to us. Examples include:
u(t) = 1, u(t) = cos(2πfot), u(t) = sin(2πfot), to cite but a few. So we have a
dilemma. Our decomposition of signals using Fourier transforms does not seem
possible, since the integrals do not converge. The resolution to our dilemma
lies in a major mathematical development of the 20th century — the theory of
generalized functions.

There are numerous references which one can consult for a more proper math-
ematical treatment than the rather cursory and intuitive treatment here. (Lumley
1970, Lighthill 1955 are two of my favorites). In brief the basic idea is to replace
functions whose integrals do not converge with functions which do. Great idea,
I’m sure you are thinking, but doesn’t this require magic? In truth it is almost
magic, since in the end we almost never worry about what we have done, and
almost always just go on doing regular mathematics like nothing ever happened.
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Figure E.1: Hot-wire measurement of the main flow velocity component in a
turbulent flow behind a cylinder sampled at 100 kHz. Data from [?].
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Only rarely will we have to actually consider that we are working with generalized
functions. Impossible, you say.

Let’s consider the following simple example. Suppose I want to take the inte-
gral of the function, f(t) = 1, from (−∞,∞). Obviously this integral does not
exist. Nor, in fact does its Fourier transform exist, at least (in the ordinary sense).

Now consider a second function, say:

gT (t) = e−t2/2T 2

(E.3)

Now since the tails of this function roll-off exponentially, it certainly is integrable.
And in fact the integral is given by:∫ ∞

−∞
e−t2/2T 2

dt =
√
2πT (E.4)

(You know this from Chapter 2, since (1/
√
2πT )exp(−t2/(2T 2) is exactly the

Gaussian which integrates to unity.)
Our integrable function gT (t) also has a wonderful Fourier transform, wonder-

ful in the sense that not only does it exist, all its derivatives exist also; i.e.,

FT{e−t2/2T 2} =
∫ ∞

−∞
e−i2πfte−t2/2T 2

dt =
√
2πTe−(2πfT )2/2 (E.5)

This is easy to compute by completing the square.
So we have one nasty function, f(t) = 1, and one wonderful function, gT (t);

the former has no integral, and hence no transform in the ordinary sense, but
the latter has both. Now note something interesting. The limit of gT (t) → 1 as
T → ∞, which is exactly the value of our nasty function, f(t). In fact, we could
just define a new function by the product fT (t) = f(t)gT (t) and note that:

lim
T→∞

fT (t) = lim
T→∞

f(t)gT (t) = f(t) (E.6)

In fact, even more interestingly, the Fourier transform of our new function, fT (t),
also exists in the ordinary sense. In this case, it’s just the Fourier transform of
gT (t) itself.

Here is where one of the really good ideas of the last century appears1, the
magic if you will. Let’s just define the Fourier transform of our nasty function,
f(t), in the sense of generalized functions to simply be the limit of the Fourier
transform of fT (t) as T → ∞; i.e,

FTgf{f(t)} = lim
T→∞

FT{fT (t)} = lim
T→∞

∫ ∞

−∞
e−i2πftf(t)gT (t)dx (E.7)

The Fourier transform of 1 in the sense of generalized functions is so useful,
we have given it a special name, the ‘delta-function’; i.e.,

1One of the first to see this was the electrical engineer named Heaviside — and he invented
the step function which bears his name.
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δ(t) ≡ lim
T→∞

GT (t) (E.8)

where GT (t) can be any function whose integral is unity and which becomes
undefined at t = 0 and zero everywhere else in the limit as T → ∞.

I’m sure you have seen δ before, but you may not have realized that it was
a generalized function. In general, the generalized functions are not uniquely
defined. For example, all the functions below are suitable for defining δ(t):

GT (t) = e−t2/2T 2

(E.9)

G2L(t) = e−|t|/T (E.10)

G3L(t) =
sin(πt/T )

πt/T
(E.11)

The first and last have continuous derivative everywhere, the second has no deriva-
tive at the origin. When working with Fourier transforms, it is generally best to
define them in terms of functions which both go to zero exponentially fast, and
which have all derivatives continuous. There is nothing in this course which needs
anything more than GT (t), the Gaussian version, or

√
2πT times it.

We can generalize this whole procedure to almost any arbitrary function,
whether deterministic or random. For example, suppose we have a stationary
random process of time, say v(t). Then we can define its Fourier transform in the
sense of generalized functions to be:

v̂(f) ≡ FTgf{v(t)} = lim
T→∞

FT{v(t)gT (t)} (E.12)

= lim
T→∞

∫ ∞

−∞
e−i2πftv(t)gT (t)dt (E.13)

where gT (t) can be any function for which the product v(t)gT (t) is integrable and
for which:

lim
T→∞

v(t)gT (t) = v(t) (E.14)

Obviously a suitable choice is the Gaussian function we started off with; i.e.,

gT (t) = e−t2/2T 2

(E.15)

Exercise: Show that the Fourier transforms in the sense of generalized func-
tions of ei2πfot, cos(2πfot) and sin(2πfot) are δ(fo), [δ(fo)+δ(−fo)]/2 and i[δ(fo)+
δ(−fo)]/2 respectively using the Gaussian version of gT (t) defined above.

Exercise: Compute the inverse transforms from the above example. Do NOT
use the short-cut version where you assume the properties of a delta-function, but
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instead work with the actual transformed version of f(t)gT (t) under the limit sign,
then take the limits.

For the rest of this course, we will simply agree that whenever there is any
doubt, we always mean the Fourier transform in the sense of generalized func-
tions. For example, when we consider homogeneous random processes in three-
dimensions, we consider the three dimensional spatial Fourier transform of the
velocity field, ui(~x, t), defined by:

ûi(~k, t) =
1

(2π)3

∫ ∫ ∫ ∞

−∞
e−i~k·~xui(~x, t)d~x (E.16)

(Note the factors of 2π appear in a spatial transform because we are transforming

over the wavenumber vector, ~k, instead of f .) Since we are transforming functions
for which the integrals do not converge, we really mean the Fourier transform in
the sense of generalized functions defined by:

ûi(~k, t) ≡ FTgf{ui(~x, t)} (E.17)

= lim
T→∞

1

(2π)3

∫ ∫ ∫ ∞

−∞
e−i~k·~x[ui(~x, t)gL3(~x)]d~x (E.18)

where gL3(~x) is some suitably defined function which makes the integral exist. An
excellent choice for gL3(~x) would be:

gL3(~x) = e−[x2
1+x2

2+x2
3]/2L

2

(E.19)

whose Fourier transform (in the ordinary sense) is given by:

GL3(~k) =
L3

(2π)3/2
e−[k21+k22+k23 ]L

2/2 (E.20)

We have used exactly this definition to show that Fourier coefficients in non-
overlapping wavenumber bands are uncorrelated.

Exercise: Find the Fourier transform of 1 in three-dimensions using gen-
eralized functions, then show how you might represented it symbolically as a
three-dimensional delta-function, δ(~k).

Exercise: If the Fourier transform can be represented in the sense of gener-
alized functions as δ(|~k − ~ko|), find the inverse Fourier transform in the sense of
generalized functions.
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Appendix F

Spectral analysis of random
signals

Stationary random processes commonly arise in the study of random signals, and
especially in the study of turbulence. As we shall see below, Fourier transform-
ing a random signal leads to a Fourier transform that is itself random; i.e., the
Fourier coefficients associated with any frequency are random and will be differ-
ent for each realization. Thus we must use statistical analysis in conjunction with
Fourier transformation if we wish to examine the frequency content of our signals.
This could be quite complicated were it not for the implications of stationarity.
As introduced in Chapter 8, a stationary random process is one for which all
the statistics are independent of origin in time. Of particular interest to us in
this appendix will be the autocorrelation given by 〈u(t)u(t + τ)〉 and its Fourier
transform, the spectrum.

F.1 The Fourier transform of a random signal

The Fourier transform and the inverse Fourier of a vector function of time, say
ui(t), form a transform pair given by:

ûi(f) =
∫ ∞

−∞
dt e−i2πft ui(~x, t) (F.1)

ui(t) =
∫ ∞

−∞
df e+i2πft ûi(f) (F.2)

Note that we have moved the differentials, dt and df , next to the integral sign, so
it will be obvious which variable is being integrated. Also it is understood that
everything to the right of the differential is to be integrated over those variables.
Finally, note that although we have chosen in this section to talk about vector
functions of time, everything can be directly applied to scalar functions of time
as well – just eliminate the subscripts.
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Now I’m sure you are asking: Why is the applicability of Fourier analysis such
a BIG THING? There are two big reasons (among many). The first has to do
with what happens when you take the inverse transform at the time t, multiply it
by the complex conjugate of the inverse transform at time t′, and average to get
the two-point correlation, Ri,j(t, t

′); i.e.,

Ri,j(t, t
′) = 〈ui(t)uj(t

′)〉 (F.3)

=
∫ ∞

−∞
df
∫ ∞

−∞
df ′ e+i2π(f ′t′−ft)〈û∗

i (f)ûj(f
′)〉 (F.4)

But we have assumed the field to be stationary, so the two-point correlation can
depend at most on the time separation, τ = t′ − t; i.e.,

Ri,j(t, t
′) = Bi,j(τ) (F.5)

Therefore equation F.3 is simply:

Bi,j(τ) =
∫ ∞

−∞
df ′

∫ ∞

−∞
df e+i2π(f ′t′−ft)〈û∗

i (f)ûj(f
′)〉 (F.6)

and the left-hand side has no dependence on either t or t′ separately, but is only
a function of τ = t′ − t. Now look carefully at the right-hand side. Clearly, unless
a miracle occurs in the integration, the right-hand side is going to always depend
on t′ and t.

Guess what? You probably guessed it. A miracle DOES occur — well, not
really a miracle, but even better than a ‘miracle’. This ‘miracle’ can be proven to
be true by using the generalized functions of the previous section. The ‘miracle’
is that since both sides of equation F.3 MUST depend only on τ = t′ − t, it
follows immediately that the Fourier components in non-overlapping frequency
bands must be uncorrelated.

Say what, you say? Exactly this:

〈û∗
i (f)û

∗
j(f

′)〉dfdf ′ =

{
Si,j(f)df , f ′ = f

0 , f ′ 6= f
(F.7)

or equivalently:

〈û∗
i (f)ûj(f

′)〉 = Si,j(f)δ(f
′ − f) (F.8)

where δ( ) is the familiar delta-function (not to be confused with the Kronecker
delta tensor) and Si,j(f) is a deterministic function called the velocity cross-
spectrum tensor.

It is easy to see by substitution that our two-point velocity correlation function
is the inverse Fourier transform (in the ordinary sense) of the velocity cross-
spectrum tensor; i.e.,

Bi,j(τ) =
∫ ∞

−∞
ei2πfτSi,j(f)df (F.9)
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It is a bit more difficult to show that the cross-spectrum is the Fourier transform
(in the ordinary sense) of the two-point velocity correlation function; i.e.,

Si,j(f) =
∫ ∞

−∞
e−i2πfτBi,j(τ)dτ (F.10)

Thus the cross-spectrum and the two-point correlation form a Fourier transform
pair.

Exercise: Use the definition of gT (t) in the preceding chapter and prove that
〈û∗

i (f)ûj(f
′)〉 = Sij(f)δ(f

′ − f) if ui(t) is a stationary random variable and ûi(f)
is defined in the sense of generalized functions by:

ûi(f) = limT→∞

∫ ∞

−∞
dt e−i2πftui(t)gT (t) (F.11)

(Hint: The solution is in the next section. But see if you can work it out before
looking at it.)

The implications of what we have accomplished become immediately obvious
if we evaluate the inverse transform of equation F.9 at τ = 0 to regain the single-
point cross-correlation; i.e.,

Bi,j(τ) =
∫ ∞

−∞
df Si,j(f) (F.12)

Si.j(f) is telling us how the single-point Reynolds stress, 〈uiuj〉 = Bi,j(τ), is
distributed over the various frequencies.

This is even more obvious if we contract the two indices by letting i = j, sum
and divide by two to get the energy; i.e.,

1

2
〈q2〉 = 1

2
Bi,i(0, t) =

1

2

∫ ∞

−∞
df Fi,i(f) (F.13)

Clearly the contracted cross-spectrum (usually called simply the energy spectrum)
is telling us exactly how the turbulence energy is distributed with frequency.

F.2 Proof of Wiener-Khinchin Theorem using

generalized functions

Start with the definition of the Fourier transform in the sense of generalized func-
tions:

ûi(f) =gf

∫ ∞

−∞
e−i 2πftui(t)dt

= limT→∞

∫ ∞

−∞
e−i 2πftui(t) gT (t)dt (F.14)
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where we choose for convenience:

gT (t) = e−[t2/2 T 2] (F.15)

Now examine the product 〈û∗
i (f) ûj(f

′)〉. Substitution from equation F.14 and
changing the dummy variable under the integral sign yields:

〈û∗
i (f) ûj(f

′)〉 = limT→∞ 〈û∗
i (f) ûj(f

′)〉T (F.16)

where 〈û∗
i (f) ûj(f

′)〉T is defined to be the integral before taking the limit; i.e.,

〈û∗
i (f) ûj(f

′)〉T =
∫ ∫ ∞

−∞
e−i 2π [f ′t′−ft]〈ui(t)uj(t

′)〉e−t2/2T 2

e−t′2/2T 2

dtdt′ (F.17)
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Figure F.1: Leftmost: original domain. Rightmost: transformed domain.

If ui(t) is a stationary random process, then the two-time correlation is a
function only of τ = t′ − t only; i.e. 〈ui(t)uj(t

′)〉 = Bi,j(τ). So we need to
transform the integral to reflect this. For convenience we also define a second new
independent variable as ξ = t′ + t. The original and transformed domains can be
viewed as the limits as L → ∞ of the finite domains shown in Figure F.1. For
τ ≥ 0, −L+ τ ≤ ξ ≤ L− τ and τ ≤ 0, −L− τ ≤ ξ ≤ L+ τ . Defining ∆f = f ′−f
and transforming the integral yields:

〈û∗
i (f) ûj(f

′)〉T (F.18)

= limL→∞
1

2

{∫ L

0
dτ ei [2πf ′+π∆f ]τ Bi,j(τ) e

−τ2/4T 2
∫ L−τ

−L+τ
dξ ei π∆fξ e−ξ2/4L2

+
∫ 0

−L
dτei [2πf ′+π∆f ]τ Bi,j(τ) e

−τ2/4T 2
∫ L+τ

−L−τ
dξ ei π∆fξ e−ξ2/4T 2

}
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Taking the limit as L → ∞ and recombining the integrals yields immediately:

〈û∗
i (f) ûj(f

′)〉T =
∫ ∞

−∞
dτ ei [2πf ′+π∆f ]τBi,j(τ) e

−τ2/4T 2
∫ ∞

−∞
dξ ei π∆fξ e−ξ2/4T 2

(F.19)

The factor of 1/2 comes from the Jacobian since we have mapped into a domain
with twice the area. It is easy to see that the inner integral is just the Fourier
transform of a Gaussian with standard deviation

√
2T and transform variable

∆f/
√
2, so it reduces to:∫ ∞

−∞
dξ ei π∆fξ e−ξ2/4T 2

= 2
√
πTe−[2π∆fT ]2 (F.20)

which when integrated over all ∆f has integral unity. Therefore in the limit as
T → ∞ this will become our delta-function, δ(∆f) = δ(f ′ − f). Since it is
independent of τ we can move it in front of the integral over τ to obtain:

〈û∗
i (f) ûj(f

′)〉 = limT→∞ 〈û∗
i (f) ûj(f

′)〉T (F.21)

= limT→∞2
√
πTe−[2π∆fT ]2

∫ ∞

−∞
dτ ei [2πf ′+π∆f ]τ Bi,j(τ) e

−τ2/4T 2

By taking the limit as T → ∞ it is easy to see that this reduces to:

〈û∗
i (f) ûj(f

′)〉 = Si,j([f
′ + f ]/2)δ(f ′ − f) (F.22)

Since the delta function kills of anything for which f 6= f ′, this is equivalent to:

〈û∗
i (f) ûj(f

′)〉 = Si,j(f)δ(f
′ − f) (F.23)

where Si,j(f) is the spectrum given by the Fourier transform of the autocorrelation
function; i.e.,

Si,j(f) =
∫ ∞

−∞
e−i2πfτ Bi,j(τ)dτ (F.24)

F.3 The finite Fourier transform

We saw earlier in section D.2 that in reality we are always limited to a finite
domain. This means that the most we can expect to be able to transform is the
finite time transform given by equation D.14; i.e., for a vector field:

ûiT (f) =
∫ T/2

−T/2
e−i2πftui(t)dt (F.25)

where for later convenience we have written it over the symmetric interval in time.
Note that this introduces a linear phase shift equivalent to multiplying the Fourier
coefficients by e+iπfT . Clearly if ui(t) is random, then so is ûiT (f), just as was
ûi(f) above for the infinite domain. What is not so obvious is the relation between
the spectrum associated with ûi(f) and that associated with ûiT (f). Note that
equation F.8 is not particularly useful to us in actually computing the spectrum,
since it contains the generalized function, δ(f ′ − f), and thus has meaning only
in the limit.
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F.3.1 An indirect method

Of course we could take the data and compute from it 〈u(t)u(t + τ)〉 for all the
time-lags available to us on the interval 0, T . For example if we have a stationary
random process we could define an estimator for the correlation from a time
average like this:

Bi,jT (τ) =
1

T

∫ T−|τ |

0
ui(t)uj(t+ τ)dt (F.26)

Note that it may seem strange to divide by T when the integration is over the
interval T − |τ | since this produces a biased estimator, but it actually has a
lower variability this way. (See if you can show this.) Also, one disadvantage of
this method it is considerably more computationally intensive than the method
outlined in the following section, the number of multiplications being proportional
to N2 for N point records.

Once we compute Bi,jT (τ), we can Fourier transform it to get a spectral esti-
mator, i.e.,

Si,jT (f) =
∫ T/2

−T/2
e−i2πfτBi,jT (τ)dτ (F.27)

where we have made the interval symmetrical since we need both positive and
negative time lags. Note that we have completely avoided the need for generalized
functions, since our correlation estimator is an ordinary function.

The problem with this method can be seen by re-writing the spectral estimator
using a window function like this;

Si,jT (f) =
∫ ∞

−∞
e−i2πfτBi,jT (τ)WT (τ)〉dτ (F.28)

where WT (τ) is defined by:

1, −T/2 ≤ τ ≤ T/2

WT (τ) = (F.29)

0, |τ | > T/2

Now it is clear that we are actually taking the Fourier transform of the product of
two functions, the correlation (the part we want) plus the window function. Thus
the spectrum we obtain is not the spectrum we seek, but the convolution of the
true spectrum with the window function; i.e,,

Si,jT (f) = Sij(f)⊗ ŴT (f) =
∫ ∞

−∞
Si,j(f − f ′)ŴT (f

′)df ′ (F.30)

In other words, the spectrum at a given frequency is contaminated by the spectrum
at all other frequencies, the exact amount depending on the window function. This
window function is given by:

ŴT (f) = T
sin(πfT )

πfT
(F.31)
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The so-called side-lobes have their zeros at frequency which are multiples of 1/T ,
but roll-off only as f−1 which is much slower than most spectra. Moreover, every
other one is negative, which means you can actually compute negative spectral
values for some frequencies. This is of course, quite unphysical. Although other
windows (e.g., Hanning, Hamming and Parzen) can be introduced to improve
things, the best approach is to avoid this method if at all possible.

F.3.2 A direct method

Another better way to proceed is to work directly with the finite transform of
equation F.25, and create the spectral estimator defined by:

Si,jT (f) =
û∗
iT (f)ûjT (f)

T
(F.32)

The spectrum generated by a single record of data will of course be random, since
the ûi’s are random. But the trick is to sub-divide a very long record into blocks
of data which are transformed separately, then averaged the spectral estimators
for each block. The more independent blocks that are averaged together, the
smoother the resulting spectral estimates (i.e., the more blocks, the lower the
variability).

We can show directly that this makes sense by substituting from equation D.14
into the definition of equation F.32 to obtain:

Si,jT (f) =
1

T

{∫ T/2

−T/2
e+i2πftui(t)dt

}{∫ T/2

−T/2
e−i2πft′uj(t

′)dt′
}

(F.33)

where we have changed the dummy integration variable in the second expression
to t′ since we want to put the integrals together. Combining the integrals and
averaging yields:

Si,jT (f) =
1

T

∫ T/2

−T/2

∫ T/2

−T/2
e−i2π(f ′t′−ft)〈ui(t)uj(t

′)〉dtdt′ (F.34)

But because the process is statistically stationary, the cross-correlation de-
pends only on the time difference, t′ − t = τ ; i.e., 〈ui(t)uj(t

′)〉 = Bij(τ) only.
Thus, we can use the same trick we used in section 8.7 to transform the integrals,
then integrate one of them out to obtain:

Si,jT (f) =
∫ T

−T
e−i2πfτBi,j(τ)

[
1− |τ |

T

]
dτ (F.35)

It is easy to see that as T → ∞ this estimator reduces to exactly equation F.10,
so this estimator (unlike the one of the previous section) is unbiased. But like it,
it is also clearly the convolution of the spectrum we want with a window. This
time, however, the window is given by the Fourier transform of:
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1− |τ |
T

, −T ≤ τ ≤ T

WT (τ) = (F.36)

0, |τ | > T

It is straightforward to show that in this case ŴT (f) is given by:

ŴT (f) = T

[
sin(πfT )

πfT

]2
(F.37)

So the sidelobes have their zeros at multiples of f = 1/T just like the top-hat
window of section F.3.1, but they roll off as f−2. Moreover, they are always
positive, meaning that it is impossible to produce negative spectral values.

F.4 An example: digital spectral analysis of ran-

dom data

We will now use Fourier analysis on some real data. First, we will use the first
1024 samples data shown in figure A.1 (first 10 ms of data). The data are taken
4 diameters downstream of a cylinder in a turbulent cross flow. Flow settings
were matched to a vortex shedding frequency of 1000 Hz. Putting the velocity
data into a vector u, we use to following MATLAB commands:

N=1024; % number of samples

dt=0.00001; % time between samples

uf=fft(u(1:N)); % do fft

f=[0:N-1]/(N*dt); % make frequency axis

uf2=abs(uf).^2/(N*dt); % calculate spectrum

loglog(f(2:N/2),uf2(2:N/2)); % loglog plot of result

The result is shown in figure F.2 (marked “first record”). The six MATLAB
script lines make the following operations: First we define number of samples to
be 1024 and the time between samples to be 0.01 ms (i.e. sample frequency of 100
kHz). We do the fast Fourier transport on the first 1024 samples and store them in
vector uf. The frequency axis is then computed using eq. (D.17)), and the power
spectrum is calculated using eq. (F.32)). Finally, the plot is made. Note that
the plot only is produced for indices from 2 to N/2. The first index correspond
to f = 0 or m = 0 in eq. (D.18)), and (as can easily been seen from the FFT
algorithm), it corresponds to the mean value of u and not a real frequency. It is
therefore not included in the plot. If we wish to obtain the real zero frequency
we must estimate it by extrapolation from the lowest frequencies we have. As
discussed in section D.3, the result is symmetric around N/2 and we therefore
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Figure F.2: Power spectrum of the data presented in figure A.1.
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only present the first half of the result. The results are usually plotted in a double
logarithmic plot since both axis cover several decades.

The result of this analysis is shown as “first record” in Figure F.2. The result
is not very satisfying. We do see a peak near 1000 Hz, but also other large peaks.
Basically the the result seem very noisy. What we have done is to estimate 1024
frequencies using 1024 data samples. Our input data is a random data set, and
therefore the result is just another random data set. To get a better estimate we
clearly need to use much more input data. But using a longer data record will not
by itself solve the problem, since we will also get more frequencies in the result
(increase the resolution of the frequency axis). We there need to do some sort
of averaging. One methods is to average adjacent frequencies, which is reduces
the variability just like averaging any random numbers. It also decreases the
frequency resolution by ‘smoothing’ the data. Another approach is to divide the
original data record into a number of shorter records of the same length and then
take the average of the results. The full data series of the data shown in Figure A.1
consists of 131 072 samples (1.3 seconds). This can be split into 128 records of
each 1024 samples. The average of the results of FFT analysis of each of these
records is also shown in Figure F.2. The result is much smoother and now has a
single dominant peak at 1000 Hz. But no matter which way we do it, the resulting
spectrum has approximately the same resolution.



Appendix G

Windows and Filters

Foreword: This appendix was largely taken from the notes from courses on tur-
bulence measurement at the Danish Technical University and Chalmers developed
by Knud Erik Meyer, Peter B.V. Johansson and William K. George.

G.1 Windows

The other problem in figure D.2(b) was the frequency content outside the signal
frequency. It turns out that this is related to the limited number of samples that
we have. The Fourier transform is really an integral from −∞ to ∞, not a limited
time. We can describe what we do by using the concept of a window. We will use
a “top hat” window. This can be defined as

wT (t) =

{
1; −T/2 < t < T/2
0; otherwise

(G.1)

We can now describe the finite time sampling of the real signal u(t) by multiplying
with this window function,

uT (t) = u(t)wT (t) (G.2)

and in the frequency domain we find

ûT (f) = F [uT (t)] = F [u(t)wT (t)] (G.3)

Using eq. (C.11), we find that

ûT (f) = û(f)⊗ŵT (f) =
∫ ∞

−∞
û(f−f1)ŵT (f1)df1 =

∫ ∞

−∞
û(f1)ŵT (f−f1)df1 (G.4)

We see that our transformed signal gets contaminated with all other frequencies
coming from the convolution with the transformed window function ŵT .

This can be seen in the example with the cosine function in figure D.2. The
t axis limits in eq. (G.1)) can be changed to suit the actual sampling. This is

349
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Figure G.1: Examples of common window functions

shown in figure D.2(a). The Fourier Transform of the top-hat window function
defined in eq. (G.1) is the function sinc(x) = sin(x)/x. This function is shown in
figure D.2(c) where the absolute value of the function is also shown as a dotted
curve. We can see how the sinc function is convoluted by the original cosine
frequency by doing a new FFT calculation with so-called “zero-padding”. This
means that samples with the value zero after the original 32 sampled data. This
will increase the resolution of the frequency. In MATLAB, zero-padding to a total
record of 256 is simply done by the command uf=abs(fft(u,256)). The result of
this command is shown in figure D.2(d). This result is very close the the analytic
result of our sampling procedure. We see how the original frequency at 0.1 has
been convolved with the sinc function. The points from figure D.2(b) are shown
in figure D.2(d) as small green rings. We see that the courser calculation are
samples of the more detailed curve. The lobes of the sinc function falls of as 1/f
and therefore in the example of figure D.2 moves spectral energy from the “real”
frequency into a large range of the total spectrum.

There are several ways to fix the window problem. The best way is to make
the record length (the window length) longer. Of course, this requires planning
before you do the experiment. Another way is to multiply the sampled data with
a window function with no sharp corners. Examples of some common window
functions are shown in figure G.1. It may seem strange to take perfectly good
data and weight it. One effect of windows is to smooth out real peaks (reduce
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resolution). There might also be bias effects, i.e. energy is put into the wrong
frequencies. Even though weighting windows can solve problems, they can also
create them, so they should therefore be used with care.

G.2 Filters

We can describe filters in the frequency domain in way similar to how we used
windows in the time domain. We could define a very simple filter (low-pass sharp
cut-off filter) as

ŵLP (f) =

{
1; |f | < fL
0; otherwise

(G.5)

We find the new frequency distribution as

ûLP (f) = û(f)ŵLP (f) (G.6)

The filtered signal in the time-domain is then found using the inverse Fourier
Transform on ûLP (f). If we apply such a filter to, for example, a square wave
signal, we would get a result similar to what we see in figure C.1. If the cut-off
frequency fL is a slightly above a frequency of 9 times the square wave period
time, we would get the result shown in the last plot of figure C.1 (marked n = 9).
We get some distortion of the signal in terms of “ringing”. Often this is not
desirable and a sharp cut-off filter is therefore not a practical solution. Instead, a
much smoother filter function should be used.

Filters and other electronic component (e.g. amplifiers) are often described by
the relative change on a logarithmic scale. Traditionally the unit “deciBel” (dB)
is used. This unit was originally used in acoustics, where it is a measure for the
ratio between two sound intensity levels (measured in W/m2). If I2 is a reference
level (e.g. the smallest sound intensity sensed by the human ear), the level of an
intensity I1 is found in dB as

In = 10 log
I1
I2

(G.7)

From this definition, we see that 1 dB corresponds to a 25.9% increase in intensity
level. If I1 is two times I2 we get In = 3.01 dB. In electronics, this correspond
to differences in power levels. Often we want instead to describe differences in
voltage levels. We can find the corresponding ratio N by relating two voltages V1

and V2 to the ratio power levels the voltages will make in a resistor R,

N = 10 log
V 2
1 /R

V 2
2

= 20log
V1

V2

(G.8)

For voltages we find, that if V1 is two times V2 then N = 6.02 dB.
Simple filters can be made with combinations of condensers (capitors), coils

(inductors) and resistors. A filter that removes high frequencies is called a low-
pass filter, and a filter that removes low frequencies is called a high-pass filter. A
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Figure G.2: Simple first order filters
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Figure G.3: Amplitude characteristics (left) and phase characteristics (right)

high-pass and a low-pass filter can be combined into a band-pass filter. The filters
that can be described by first order differential equations are therefore called first-
order filters. A first order low-pass filter rolls off at -6 dB/octave, a second order
at -12 dB/oct, and so on. As illustrated in figure G.3, a filter can be described
by characteristics of amplitude and phase of the output signal compare to input
signal as a function of the frequency. A filter is characterized by a cut-off frequency
(frequency where attenuation is 3 dB) and then the slope of the characteristic in
dB/decade. As it can be seen, filters change not only the amplitude but also the
phase of the output signal. Usually this is not a problem, but if two signals are
to be compared after passing two different filters, care should be taken.

More advanced filters with different slopes in dB/decade can be built. Filters
that roll-off at -48 dB/octave or more are not uncommon, and can be very useful
in preventing aliasing. Details are not covered here, but can be found in signal
processing books.


