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Eddy Viscosity Calculations of Turbulent
Buoyant Plumes

C. B. BAKER D. B. TAULBEE W. K. GEORGE
ABSTRACT h)
It is shown that a simple eddy viscosity model h
can predict accurately the velocity and temperature 2
profiles of a fully developed axisymmetric buoyant
plume in neutral surroundings, if the contribution kl
of the turbulence to the vertical heat transport is n
accounted for.
Calculations with turbulent Prandtl numbers near PT
unity are shown to give the best agreement with exper- Q

imentally determined profiles.
for flows in local scale equilibrium such as the simple

plume, eddy viscosity models can provide a useful
means for discriminating between conflicting experi-
mental data.

Finally, reasons for the success of these simple

models in buoyant plumes, possible additional flows
in which the models can succeed, and probable limit-

ations on this type of modeling are briefly discussed.

NOMENCLATURE

width constant defined by equation 29.

rate at which buoyancy added at source defined
by equation 6.

modified axial velocity function defined by
equation 24.

axial velocity function defined by equation 7.
centerline value of fl(n).
gravitational acceleration.

turbulent heat flux scale defined by equation 8.

It is also shown that

[T = N o 4

<

radial turbulent heat flux function defined by
equation 7.

axial turbulent heat flux function defined by
equation 7.

radial velocity function defined by equation 7.
exponent occurring in equation 29.
turbulent Prandtl number defined by equation 17.

fraction of total buoyancy (heat) carried by
mean motion equation 23.

turbulent energy scale defined by equation 8.
turbulent Reynolds number defined by equation 16.
radial coordinate

Reynold's stress function defined by equation 7.
mean temperature

value of tl(n) at n. = o, centerline,

temperature scale defined by equation §.

modified temperature difference function defined
by equation 24,

temperature difference function defined by
equation 7.

centerline value of tl(n).

mean vertical velocity.

velocity scale defined by equation 8.
fluctuating vertical velocity.

mean radial velocity.



fluctuating radial velocity.

x = vertical, or axial, cocordinate.

a(n)= dimensionless function containing radial depend-
ence of eddy diffusivity.

s, = eddy diffusivity (equation 2).

B = coefficient of thermal expansion. '

n = r/x, dimensionless radial coordinate.

n, = integration (or dummy) variable.

v{(n)= dimensionless function containing radial depend-
ence of eddy viscosity.

v = eddy viscosity (equation 1).

p = ambient fluid density

6 = fluctuating temperature

£ = dimensionless radial coordinate defined by
equation 24.

£, = integration (or dummy) variable.

AT = mean temperature difference from ambient.

INTRODUCTION

Few concepts 1n turbulence theory are more widely

used than the closure of the averaged equations of
motion by an eddy viscosity. In the form originally
proposed by Boussinesq in 1877 (1], a simple propor—
tionality relationship between turbulent transport
and mean gradient is assumed, the constant of propor-
tionality being the eddy viscosity (or diffusivity if
concentration or heat are being considered). For ex-
ample, the turbulent Reynolds stress is written

— 3u
-uv = 2
Ve or w
and the turbulent heat flux is taken to be
—— 9T~
—ve = a == (2)

The similarity between the two relationships written
above is often referred to as Reynolds' analogy.

The eddy viscosity concept also plays an impor-
tant role in higher order closure methods of turbul-
ence theory. The so-called "one-equation'" and "two-
equation" models are simply techniques for generating
an eddy viscosity with spatial variation (c.f. Launder
and Spalding [2]). Even the turbulence models which
deal directly with the averaged equations for. the
Reynolds stress and turbulent heat flux use eddy vis-—
cosity-type terms to model the third-order moment
terms for the turbulent diffusion (c.f. Reynolds [3]).

The simple eddy viscosity models which utilize
only the mean equations have had a bewildering variety
of successes and failures in modeling turbulent flows.
Tennekes and Lumley [4] argue that the eddy viscosity
can be expected to be successful when the turbulent

flow is characterized by single time and length scales.

Thus the presence or absence of dynamically important
multiple length or time scales can provide useful
clues as to whether an eddy viscosity model might be
successful. Another way to rephrase the thesis of
Tennekes and Lumley is to state that eddy viscosity
models might be expected to work when the flow is in
local scale equilibrium, It will be shown that the
simple buoyant plume represents such a flow; thus an
eddy viscosity formed from local parameters, either
assumed or calculated, should provide reasonable

[20].

solutions.

There have been numerous attempts to model both
the turbulent buoyant plume and forced jets involving
varying amounts of buoyancy. These attempts have
ranged from the integral entrainment velocity models
of Morton et al [16], [17} and the mixing length
model of Madni and Pletcher [18], to the second orderxr
turbulence models of Chen and Rodi [19] and Tamanini
it is not the purpose of this paper to evaluate
these attempts or even improve upon them. Rather, it
is our goal to explore in detail the application of
the simple eddy viscosity to a flow which completely
isatisfies the conditions for its application. Of
particular interest will be the model's ability to
accurately predict the profiles, it's sensitivity to
choice of constants, and the importance of the non-
negligible vertical turbulent heat flux. We follow
closely the approach of Yih [7] who obtained closed
form solutions for turbulent Prandtl numbers of 1.1
and 2.0 by neglecting the vertical turbulent transport
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Figure 1 - Sketch showing plume and coordinates.

THE TURBULENT BUOYANT PLUME

The simple turbulent buoyant plume (shown schem—
atically in figure 1) is a useful model of many natur-
ally occurring processes. A vertical column of fluid
is driven by a buoyancy source at the base and spreads
by turbulent entrainment. The plume is assumed to be
turbulent and fully developed, stationary in the mean,
and to have a sufficiently high turbulent Reynolds
number that viscous terms can be neglected in the
equations for the mean flow. Making the usual
Boussinesq approximations (c.f. Tennekes and Lumley
[4]) we write for the mean motion of axisymmetric
flow,
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AT is the difference between the local tempera-
ture and the temperature at infinity and B represents
the thermal expansion coefficient. The mean pressure
gradient term has been eliminated using the r-momentum
equation, and the streamwise gradient of the turbulent
normal stress gradient has been neglected. The stream-
wise gradient of the turbulent heat (temperature) flux
which is usually neglected has been retained, for now.

For later use we integrate the temperature equa-

tion across the flow to obtain
©0

2m J g8 [UAT + udlr dr .

[¢]

where pF_can be identified as the rate at which
weight deficiency or buoyancy is added to the source.
For the neutrally stable environment assumed here,
pF 1is also the rate at which buoyancy crosses any
given plane.

It is appropriate to note at this time that the
turbulent contribution to the integral above may not
be negligible. For the axisymmetric case, the con-
tribution of the turbulence has been estimated as high
as 15% (George, Alpert and Tamanini [5]). This ques-
tion and its significance will be discussed later.

If we assume that the ambient fluid is of uniform
density (or neutrally stable), the flow is entirely
characterized by the rate at which buoyancy is added
at the source and the distance from the source. We
seek similarity solutions of the form

F (6)
[}

il

n=r/x
U= Usfl(n)
vV = Uskl(n)
g8AT = T _t, (n) )

uv = Rssl(n)

govt = H_h, (n)
ggut = H_h,(n)

Substituting into the equations of motion, de-
manding that the coerricients of terms in the equa-
tions be independent of x, and applying the integral
condition that F_ be independent of x yield the
following functidnal relationships (c.f. Tennekes
and Lumley [4], Rouse, Yih and Humphreys [6]):

1 _1
U =F 3 x 3
s o
2 _35
3 3
Ts Fo x (8)
2 _2
R =F 3 X 3
s [
H =F x—2
s [}

Using these the equations of motion reduce to
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The dependence of the set of equations above on
k, (the cross-stream velocity component) can easily
beé removed by integrating the continuity equation
(eqn 11) and substituting for k, in the momentum and
temperature equations. The restlts are

£! (m
1.2 50
3 £, - 3 I n,f. dn

1 n 1171
o (12)
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THE EDDY VISCOSITY MODEL FOR THE PLUME

It is clear that these equations (and therefore
the flow) are completely characterized by single
length and time scales since all lengths are propor-
tional to x, and all time scales to x/U_. Thus from
our previous discussion, we expect that an eddy vis-
cosity model will be successful in predicting the
evolution of this flow.

On dimensional grounds we must have

v

o = U x V(W (14)

[+

e = Ug X a(n) (15)

There is no reason, of course, to expect that the
eddy viscosity should be the same for both axial and
cross—-stream heat flux. For reasons which shall be
presented later in the discussion, it is not necessary
to include the axial gradients of the turbulent heat
flux in the calculation even though the turbulent
fluctuations may contribute a significant fraction of
the total heat flux. Therefore we shall ignore the
bracketed term of equation (13) which represents the
turbulence contribution to the vertical heat transport.
(We will later account for this contribution in the
integrated energy balance or the buoyancy integral).

Since the flow being modeled is a free shear flow,
it may be assumed well-mixed since its dynamics will
be dominated by a single large eddy structure (c.f.
Townsend [15]). Therefore, we try an eddy viscosity
and eddy diffusivity which are independent of radial
position, that is,

v{(n) = constant = 1 (16)
(n) nstant = L (
a{n) = co = 17
PR )
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where R, and P_ will be referred to as the turbulent
Reynolds' and $randtl numbers respectively. Thus we
have

Y F 1/3 x2/3

Ve Ry "o (18)
and 2/3
ae =P : F01/3 x !
TRT (19)
Substitution into the equations of motion yields
n
f'
1 ,2_35 1 J n £, (ny)dn
-3 T3 e i (20)
_!‘_!‘._d__ v + t
"Ry an (nf}) 1
5 5 ti n ( )d
2 - = £ n
-3 fltl 3 n Jo T]l 1 nl 1 1)

1 14d

=g (e
RTPT n dn 1

These are ordinary differential equations for the two

functions, £, and t., and can be solved directly when

RT’ P, and t%e boun&ary conditions are specified.
%he appropriate boundary conditions are

£1(0) =0, £,(2) = £] (=) =0 ‘
(22)
ti(o) =0, t, (=) = t] (=) =0

These simply state that the flow is symmetric about
the axis and vanishes at infinity.

The solutions to these equations must satisfy
some form of the integral constraint of equation (6).
1f we denote that fraction of the buoyancy which is
carried by the mean flow as Q, the appropriate con-
straint in dimensionless form is

2w J fl(n) tl(n)ndn =Q 23)

o

The factor Q can take any value between zero and unity,

the latter corresponding to a negligible turbulent
contribution to the vertical heat transport. Note
that this is the only place where the (unknown) tur-
bulent contribution to the buoyancy integral enters
the problem, and that the magnitude of this contri-
bution in this formulation must be specified.

THE DEPENDENCE ON THE PARAMETERS RT’ P AND Q.

T)
We can illustrate the dependence of these equa-
tions on the coupled parameters by first carrying out
the following transformation on equations (12) and
(13).
£ = /Ry n
R 1 (24)

£ £ L £ () > €®) kM By Tk @)

The governing equations can easily be shown to reduce
to

4
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and the integral constraint is now given by
o R..Q
T
ft £dE = 5—
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In this form it is clear that the solutions to
equations (25) and (26) depend only on the parameter
P_ and are independent of R, and Q. These latter
dépendencies enter only when the integral constraint
of equation (27) is applied, and then only in the
combination RpQ. Thus an entire family of possible
solutions is generated for each value of Q. It is
not until we map this solution back to physical coord-
inates by reversing the transformation of equations
(24) that the actual dependence on (or Q) enters.
The choice of Q is, of course, limited by the physical
constraints 0 < Q < 1.

From the above it is clear that the magnitude and
basic shape of the profiles are determined only by the
product R, Q In particular, the centerline values are
uniquely Eetermined. From equation (24), it is also
clear that the actual physical width (or spreading
rate) is determined by alone. If the centerline
values are assumed determined by the data, then the
profile width determines Q, the fraction of the total
vertical heat (or buoyancy) transport due to the tur-
bulent fluctuations. The reverse is, of course, true
also.

THE EXACT- SOLUTION OF YIH

Yih [7] was able to find exact solutions* satis-
fying the equations, boundary conditions, and integral
constraints for the particular cases P_ = 1.1 and 2.0.

T
The profiles were

f

£(n) = m (28)
tO

t(n) = ——[1+An2]m (29)

where for P, = 1.1, m = 3 and for P_ = 2.0, m = 4. As
illustrated in the previous section the parameters f ,

t , A, P, must be interrelated. These relation-
: T . R
ships are summarized in Table I.
TABLE I
PT 1.1 2.0
m 3 4
2
f0 /RTQ 11/16% 25/36™
tO/RTQ 11/18™ 125/240m
£ 2 9/8 3/4
o o
Afo/toRT 10/64 11/64
A/RTB/ZQU2 0.065 0.057

* We present modified forms of Yih's solutions to
include the Q-factor.



Yih's solutions have been presented along with the
numerical results in Figures (2)-(4).

NUMERICAL SOLUTION FOR ARBITRARY PRANDTL NUMBER

The coupled nonlinear second order ordinary dif-
ferential equations given by equations (25) and (26)
were solved numerically to give f_(£) and tl(g). The
numerical solution involved an iterative process in
which at each iteration step the solutions to linear-
ized versions of (25) and (26) were found. The lin-
earization of equation (25) was accomplished by spec-
ifying that £(£) and IE glf(g )dg1 are known and given
by the previous iteration. T%e linearized equations
were central differenced yielding a system of algebra-
ic equations with a tridiagonal matrix whose solution
was easily accomplished by an elimination process.

The solution was initiated using simple geometric
functions to approximate t.(n) and f.(n) over the n
range of interest. The program iterdtes upon the
functions t.(n) and f.(n) until convergence is attain-
ed. The so}ution provides the functional relations
tl(n) and f.(n) for a given and P,,, and computes
RTQ’ the va}ue of the mean budyancy integral.

Two hundred grid points were found to provide an
increment in n which insured accuracy with reasonably
fast convergence. The boundary conditions at infinity
were known from the physics of the problem (equation
22) and experimental data were used to bound values
at f. (o) and t, (o). Infinity was established by ex-
tending the solution in the radial direction to a
value at which the buoyancy integral was constant.

The profiles calculated by this technique were iden-
tical to those obtained at considerably greater expense
and for a more limited range of and PT by Hamilton
and George [8] using a shooting method.

RESULTS OF THE CALCULATIONS AND COMPARISON WITH
EXPERTMENT '

It was shown earlier that the form of the solu-
tions depended only on the variables P, and Q.
Figure (2) shows the interdependence o¥ the cénterline
velocity and temperature as functions of the parameters
R..Q and P.,, The calculations cover the range of the
ekisting data (9 < t, (o) < 13.7, 2.7 < £ (o) < 4.7).
Also shown are the lines corresponding td Yih's closed
form solutions for P = 1.1 and 2, and the aforemen-
tioned calculations of Hamilton and George [8].

The experimental values obtained by Schmidt [9],
Yih [10] and George, Alpert, and Tamanini [5] are also
shown. The measurements of Schmidt have long been
suspect since they do not satisfy the momentum equa-
tion (c.f. [10]). The measurements of Yih have re-
cently been questioned by Yih himself [7] because of
problems with the velocity probe, and by George et al.
[5] who questioned whether Yih's flow development
length was long enough to allow sufficient momentum
buildup from a heat source to achieve an asymptotic
state. In view of the fact that turbulent Prandtl
numbers are generally accepted to be near unity for
free turbulent shear flows, figure (2) indicates that
these suspicions about the earliest measurements are
probably well-founded, and they will not be used
further here.

Figures (3) and (4) show the calculated profiles
of velocity and temperature for P_=1 and several values
of R_Q. Also shown for comparison is the data of re-
ference [5]. The agreement between the measured pro-
files and those calculated for RTQ = 50 is striking.
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Figure 2 - Plot showing interrelation of centerline
values of f, and t, as functions of para-
meters Q and P_,.” Solid lines show results
of present study. Results of ref [8] shown
for P, = 0.95, 1.0, and 1.1 with dashed
lines. Analytical results of ref [7] coin-
cide with present study for PT =1.1, 2.0
(eqns. 28 and 29).

Temperature Profiles for Axisymmetric Plume
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Figure 3 - Temperature profiles (normalized to center-
line value) for P_ = 1.0, R_Q = 44, 50, 56
with experimental data of ref [5].



As might be expected from the results shown in
figure (2), Yih's solution for P, = 1.1 is very close
to those shown above. In fact wﬁen the width para-
meter is chosen to be A = 26, the profiles given by
equations (28) and (29), when normalized by their
centerline values, are indistinguishable from the Ry0Q
= 50 contours in figures (3) and (4). In view of is,
Yih's profiles should be used in place of the commonly
used Gaussian profiles whenever an analytical expres-
sion is desired since the fit to the velocity profile
is far superior. (c.f. reference [5]).

Velocity Profiles for Ayisymmetric Plume
10~ ~

08r \\\

061

041

£ 7400)

0 04 02
n=r/x

Figure 4 - Velocity profiles (normalized to center-
line value) for P, = 1.0, Q = 44, 50, 56 with
experimental data of ref. [5].

Figures (5) and (6) show the calculated Reynolds

stress and radial turbulent heat flux corresponding
to the Q = 50, P, = 1.0 case presented above. In
order to obtain thése plots it was necessary to know

explicitly, thereby necessitating a choice for Q.
We have selected Q = 0.85 which corresponds to the
estimate of George et al. [5] based on measurements
of u8. Also plotted are the Reynolds stress and radial
turbulent heat flux measurements of Beuther and George
{11). Agreement between the calculated and measured
values is excellent near the centerline and in the
core region of the plume. The fact that the calcula-
ted and measured values of the heat flux deviate at
large n may be due to the non-negligible influence of
the vertical turbulent heat flux on the temperature
equation in this region (see discussion below). The
agreement between calculated and measured Reynolds
stress at all values of n is surprising and gratifying.

Radial Turbulent Heat Flux
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Figure 5 - Calculated radial heat flux for P_ = 1.0,
1 R¥Q = 50, Q = 0.85 with experimental data
of ref. [11].
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Figure 6 - Calculated Reynolds stress for P, = 1.0,
R.Q = 50, Q = 0.85 with experimental data
of ref [11].



DISCUSSION

It is both surprising and somewhat misleading
that such excellent agreement can be obtained between

measured profiles and the predictions of a simple eddy
viscosity model which accounts for the large turbulence

contribution to the vertical heat flux in only the
most elementary manner. It is interesting to specu-
late on the reasons for this success.
ularly important when considering extended applica-
tions of this model to other problems dominated by
buoyancy. __
The vertical turbulent heat flux profiles (u6)

measured by George et al. [5] are shown in figure (7).
It is obvious that this profile is considerably broad-

er than the temperature or velocity profiles (normal-
ized 'to the same maximum value). In fact, over the

core region of the plume, it is reasonable to approx-
imate uf by a simple top hat function.
in the core region accounts for the fact that it has
no influence over the shape of the velocity and tem-

perature profiles except through integral parameter Q.

As the intermittency at the outer edge begins to play
a role in the actual profile shape. It makes sense
that this effect would first be seen in the tempera-
ture equation, and probably accounts for the devia-
tions between calculated and measured values of
radial heat flux.

Vertical Turbulent Heat Flux

209 . b
1.6[' °
!?g 12+
N
S
5y 08f .
N
T |
.QN
04r
0 . !
0 01 0.2

_ n=r/x
Figure 7 - Calculated vertical heat flux for P = 1.0,
RT = 60 with experimental data of raf. [5].

There is reason to believe that this relative
constancy of the vertical turbulent heat flux is ex—
hibited in, at least, two-dimensional plumes and the
main part of the natural convection turbulent bound-
ary layer next to a heated vertical flat plate (c.f.
ref. [12] and [13]). Calculations have already been
carried out by the present authors for the two-

This is partic-

This constancy

dimensional plume but are not presented here because
of the inadequate experimental data base. (Q has not
been measured). Efforts are currently being made to
compute the profiles for the main part of the natural
convection boundary layer using a constant eddy vis-
cosity and matching the profiles to the buoyant sub-
layer profiles of George and Capp [14] as the wall is
approached.

Finally, an attempt was made to calculate directly
the vertical turbulent heat flux, - UB using the same
value for the eddy diffusivity as used for the radial
component. This corresponds to the commonly assumed
isotropic medium model

— aT .
- ui9= % 3%
i
The result for the case P, = 1, R, = 60 is plotted in
figure (7). It is clear ?hat the actual vertical heat
flux is substantially underestimated.

The reasons for this are obvious when one con-
siders the dynamical equation for -uf. Unlike the
equation for v8 where the dominate source terms arise
only from mean gradient terms, the ug equation has,
in addition, a direct buoyancy source term which
depends only on gravity and the temperature fluctua-
tions. Thus it is not surprising that a "gradient
transport” model fails in accounting for its behavior.
One can infer from this that isotropic eddy viscosity
models will probably always fail in problems involving
buoyancy when the directions of the mean flow and
gravity are aligned. Note that this does not exclude
the possibility that additional tricks (like the Q
factor introduced above) can be employed to account
independently for the vertical turbulent heat flux
contribution to the problem.

SUMMARY AND CONCLUSTIONS

It has been shown that a simple eddy viscosity
model can accurately predict the velocity and temper-
ature profiles of a simple buoyant plume in a neutral
environment, if the contribution of the turbulence to
the vertical heat transport is accounted for separately,
This result was anticipated from the fact that the flow
could be characterized by a single time and a single
length scale.

The computed centerline values proved to be useful
in sorting conflicting experimental data; it was con-
cluded that turbulent Prandtl numbers near unity gave
the best results. The best fit to the experimental
data of references [5] and [11] was given by PT = 1.0
and

1 1/3 2/3
Ye T 60 Fo x
This corresponds to R Q = 50 for which 857 of the ver-
tical heat transport 1s carried by the mean flow.

Since the computed profiles for turbulent Prandtl
numbers near unity were virtually indistinguishable
from Yih's analytical solution for P_ = 1.1 (eqmns. 28
and 29), it is strongly recommended Ehat Yih's solution
be used as empirical profiles (with constants to be
determined from the data) in place of the oft-used
Gaussian forms. We recommend

f(n) = ——243“5—5
[1+26n7]
and .
t(n) = __9_1_7__3_
[14+26R1°}



for the velocity and temperature respectively.

It is interesting to speculate as to whether the
method used here can be extended to more complicated
problems such as forced plumes and stratified environ-
ments. It is easy to show that either of these situa-
tions introduces new time and length scales into the
problem. When the ratio of these new scales to the
old is small, it is reasonable to expect the eddy
viscosity will be nearly independent of it. More-
over, an expansion in small values of the length and
time scale ratio might prove useful. It is not
immediately obvious how to account for the variation
of the vertical turbulent heat transport in such a
model.
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