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The effect of cross-flow velocity on mean-square derivatives

measured using hot wires

D. Ewing, W. K. George

Abstract It is well known that significant errors occur in
the velocity derivative moments measured in turbulent
flows when the measuring transducer is too large or Tay-
lor’s hypothesis is used in high-turbulence-intensity flows.
An additional error occurs when velocity derivative mo-
ments are measured with hot wires in high-turbulence-
intensity flows, because the wires cannot resolve the in-
dividual velocity components in these flows. Estimates of
the error this causes in the derivative moments measured
with single-, cross-, and parallel-wire probes are developed
herein. The errors are significant in the derivative mo-
ments measured with cross-wire probes, but are smaller in
derivative moments measured with single- and parallel-

wire probes. For example, the relative errors in (u, /0x;)*
measured in the far field of the round jet are 30-50%
smaller than predicted in previous analyses.

1

Introduction

Velocity derivative moments are used to determine many
important characteristics of turbulent flows, such as the
rate of dissipation of turbulent kinetic energy or the mean-
square vorticity. It is challenging to measure these mo-
ments accurately, in part, because of the errors introduced
by the finite size of the transducers used in the measure-
ments. For example, Wyngaard (1969) showed that mea-

surements of (Ju; /0x,)* with a parallel-wire probe are 10—
25% smaller than the actual moments when the distance
between the wires is three to six times the Kolmogorov
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length scale. Here, u; is the fluctuating velocity in the
mean-flow direction, and x, is the coordinate in the cross-
stream direction.

The moments of the velocity derivatives in the mean-
flow direction, x;, are normally measured using Taylor’s
frozen-field hypothesis (Taylor 1938). In this approach, it
is assumed that the small-scale turbulent motions that
contribute to the derivative moments are frozen as they
are convected past the measuring transducer. It is also
assumed that they are convected at a constant velocity, U,
so the variance of the derivative moments in the mean-
flow direction can be approximated as (Monin and
Yaglom 1975)

duy\ 1 /dur 2 )
(&), =w (&) »
where du"/dt is the time derivative of the fluctuating
velocity measured by the transducer.

There have been numerous analytical and experimental
investigations that have examined when the assumptions
in Taylors’ hypothesis are approximately satisfied in tur-
bulent flows and have developed estimates of the errors
that occur in measurements with Taylors’” hypothesis (e.g.,
Lumley 1965; Wyngaard and Clifford 1977; George et al.
1989; Mi and Antonia 1994). For example, it can be easily
shown that the small-scale motions are approximately
frozen as they are convected past the transducer in many
turbulent flows (e.g., Lumley 1965). However, these mo-
tions are advected by the large-scale motions so the ad-
vection velocity is not even approximately constant in
high-turbulence-intensity flows. Lumley (1965) developed
a mathematical model to estimate the size of the error this
causes and showed that the value of (du; /0x;)* measured
using Taylor’s hypothesis could be approximated as

6u1 2_ aul 2 1+u_%+2u_§+2u_§ (2)
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for “locally” isotropic turbulence. Here, u;, u,, and u3 are
the components of the fluctuating velocity in the x;, x,,
and x; directions respectively, and U is mean velocity in
the x; direction. The error is significant in moments
measured in moderate- or high-turbulence-intensity flows.
For example, it exceeds 20% in the entire far field of the

axisymmetric jet (George et al. 1989). Wyngaard and
Clifford (1977) extended Lumley’s model to estimate the

value of (Ju,/0x;)” and the scalar derivative moment,

(00/0x,)?, which would be measured using Taylor’s



hypothesis. George et al. (1989) later showed that the es-
timates of the measured derivative moments developed by
Lumley (1965) and Wyngaard and Clifford (1977) could be
deduced using less restrictive assumptions than previously
thought.

George et al. (1989) also measured (Ou, /0x;)” in the far
field of a round jet using both a stationary single wire and
a single wire on a flying probe. They assumed the errors in
the flying-wire measurements were negligible relative to
those in the stationary-wire measurements and showed the
relative errors in the stationary-wire measurements were
in good agreement with the errors predicted using Eq. (2).
Later measurements showed, however, that the small-scale
motions in the round jet were not “locally” isotropic, as
assumed in the derivation of Eq. (2), but instead were
“locally” axisymmetric (George and Hussein 1991). In a
similar experiment, Mi and Antonia (1994) examined the
accuracy of the predicted errors for scalar derivative mo-
ments using measurements from the far field of an axi-
symmetric jet. They found little difference between the
predicted errors for “locally” isotropic and “locally” axi-
symmetric turbulence and showed that the predictions for
both cases were in good agreement with the measurements
from the jet. The difference between the errors in the
velocity derivative moments for “locally” isotropic and
“locally” axisymmetric turbulence in the round jet will
be examined here.

In all the aforementioned analyses, it was assumed that
the measuring transducers could exactly resolve the indi-
vidual velocity components in turbulent flows. This,
however, is never true for single- and cross-wire probes in
moderate- and high-turbulence-intensity flows. Instead,
the velocities measured with these probes include contri-
butions from the cross-flow velocity component. It is well
known that this causes significant errors in the velocity
moments measured with these probes in moderate- and
high-turbulence-intensity flows (e.g., Hinze 1975, Hussein
et al. 1994). Heretofore, however, the error this causes in
measurements of the velocity derivative moments has not
been considered.

A model is developed here to estimate the error from
the cross-flow velocity in measurements with single-,
cross-, and parallel-wire probes. This model also includes
the error introduced by the unsteady convection velocity
in measurements using Taylor’s hypothesis (e.g., Lumley
1965; George et al. 1989) and the spatial resolution error in
measurements with parallel-wire probes (e.g., Wyngaard
1969). Measurements from the far field of the axisym-
metric jet reported by George and Hussein (1991) and
Hussein et al. (1994) are then used to evaluate the relative
size of the errors that occur in measurements of the
velocity derivative moments for this flow.

1.1

Background on the model

The analysis here follows the approach outlined by George
et al. (1989), which, in turn, includes many aspects of
Lumley’s model. For example, following Lumley (1965), it
divides the flow into two types of motions: small-scale
statistically homogeneous motions that contribute to the
velocity derivative measured by the wire, but make a

negligible contribution to the instantaneous velocity
measured by the wire; and large-scale unsteady motions
that contribute essentially all the instantaneous velocity,
but make a negligible contribution to the derivative of the
velocity measured by the wire. As in Lumley’s model, it is
also assumed that the velocities from these two sets of
motions are statistically independent. Although these as-
sumptions are not formally correct in turbulent flows, they
are approximately valid in high-Reynolds-number flows,
where the large- and small-scale motions differ signifi-
cantly in size, and the small-scale motions are “locally”
homogeneous.

However, unlike Lumley’s approach, it is not necessary
to specify a probability density function for the unsteady
convection velocity in George et al.’s approach. In this
approach, the system is modeled as a probe moving with a
fluctuating velocity through a frozen small-scale field.
George et al. (1989) argued that this model was dynami-
cally similar to Lumley’s model from the perspective of a
hot wire on the probe if the velocity of the probe was equal
in magnitude but opposite in direction to the velocity from
the large-scale motions in a turbulent flow. Using this
approach, George et al. deduced the estimates of the
measured derivative moments developed earlier by Lum-
ley (1965) and Wyngaard and Clifford (1977) without
specifying the probability density function for the large-
scale velocity field. This approach is followed here, since
it yields the desired results with the least restrictive
assumptions.

2
Measurement using Taylor's hypothesis

2.1

Single-wire measurements

A single hot wire positioned normal to the direction of the
probe’s average velocity, x; here, primarily measures the
instantaneous velocity normal to the wire, particularly
when the ratio of its length to its diameter is large
(Champagne et al. 1967). Thus, the velocity measured by a
“long” single wire aligned in the x;-direction on a probe
moving through a small-scale field can be approximated as

ul'(t) = {[71(8) + m(Z)P + [7a(0) + BE)Y (3)

where v, v,, and v; are the components of the probe’s
velocity in the negative x;, X,, and x3 directions, u;, iy,
and u; are the components of the velocity from the
small-scale frozen field in the positive x;, x;, and x;
directions, and X5 (t) is the position of the probe in the
frozen field. This expression differs from corresponding
expressions in the previous analyses (e.g., George et al.
1989) where it was assumed that only the component
it (x5) is measured from the small-scale field. The posi-
tive direction of the probe’s velocity components are
chosen in the negative coordinate directions here, so that
a positive probe velocity corresponds to a positive ve-
locity from the large-scale motions when the results of
this model are used to estimate the error in a turbulent
flow.

The time derivative of the velocity measured by the wire
is given by

419



420
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where summation is implied for repeated subscripts except
for Greek letters. Here, though, 7 is only summed from 1
to 2. The last two terms in this expression are of higher
order, since it has been assumed that the small-scale
motions make a negligible contribution to the measured
velocity, and the time derivative of the probe’s velocity is
small compared with the rate of change of the velocity
measured from the small-scale field.

Following George et al., the position of the probe in the
small-scale frozen field can be determined by integrating
the velocity of the probe along its path, i.e.,

t

(0 =it~ [ na(0)dr (5)

The latter term is negative since the positive components
of the probe’s velocity are in the negative coordinate di-
rections. Thus, the velocity from the frozen homogeneous
small-scale field at the position of the probe can be written
as

t
’km[xgn(to)*ﬁo V(1) df] dk] dkz dk3 (6)
where the inverse Fourier transform is defined in the
sense of generalized functions (Lighthill 1958). Here, k;,
k,, and k; are the components of the wavenumber vector
in the x;, x,, and x3 directions. The time derivative of the
velocity measured from the small-scale field can then be
written as

div, _ [[[ . -
i :/// —ikjviti, (k)

" eikm[fc‘,’,,(to)—fto V(1) dt]

X e

dk, dk; dk;s . (7)

It follows that the time derivative of the velocity measured
by the wire in Eq. (4) can be rewritten as

du 7 o
dt [+ 7] /// i)

x e*nin(t) 4k, dk, dks (8)

and its variance is given by
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since it has been assumed the probe’s velocity and the
velocity from the small-scale field are statistically inde-
pendent. Here, @y, (k,) is the three-dimensional spectrum
of the small-scale velocity field given by (cf., Monin and
Yaglom 1975)

(k)0 (k, — K,) = Bk )it (K))} (12)
Applying Taylor’s hypothesis to the variance of the mea-
sured time derivative yields

ow\® 1 (duy\® %, ¥ v; Ouydily
oxi ), U*\dt ) #+72UU x dx

m

(13)

where, again, | and n are summed from 1 to 2, while i
and j are summed from 1 to 3. This expression can be
reduced to the expression developed by George et al.
(1989) if the term v;v,/[¥* + ¥3] is replaced with 0y 6,1,
the term for a hot wire that only measures the velocity
component in the mean-flow direction. Physically, the
term ¥;7,/[v: + 73] accounts for the contribution of the
cross-flow component from the small-scale velocity field,
ily, when the large-scale motions convect the small-scale
motions past the wire at an angle relative to the mean-
flow direction.

Equation (13) can be further simplified by approxi-
mating 1/(#? + ¥2) using a binomial expansion given by

1 1 V1 Vi v Vi

—~ — = — 1_2i+
n+v U u vz v U U3

where U and v; are the mean and fluctuating probe ve-
locity given by E{v;} = Ud;; and v; = ¥; — Ud;;. (A similar
binomial expansion is used to estimate the error that the
contribution from the cross-flow velocity causes in the
velocity moments measured with hot wires; e.g., Hinze
1975). This expansion should yield reasonable results if
most realizations satisfy the convergence criterion given

2vi v Vi
7 W_FW <1 (15)
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Here, the subscripts / and n are summed from 1 to 2,
while i and j are summed from 1 to 3. This expression
reduces to

Thus, the value of (Qu;/0x;)* measured with a single

wire using Taylor’s hypothesis can be approximated
by
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where v = (v;v;/ 3)1/ 2.1 The underbraces in this expression
highlight the terms not included in the previous estimates
of the measured moment (e.g., George et al. 1989), and thus
represent the error caused by the cross-flow velocity.
Equation (16) can be used to estimate the errors in
derivative moments measured in a turbulent flow by
evaluating the moments of the probe velocity using the
velocity moments from the flow and evaluating the ve-
locity derivative moments from the small-scale field using
the derivative moments from the flow. Several of the de-
rivative moments in this expression are difficult to mea-
sure and, hence, are often not measured. In these cases, it
will be necessary to approximate these terms by making an
assumption about the small-scale motions such as that the
motions are “locally” isotropic or “locally” axisymmetric.

2.2

Cross-wire probes

The response of a cross-wire probe, with wires at an angle
of 45° to the mean-flow direction, can be approximated as

(U 4 u)? + K (" — u)?
= [(71 + 1) + (72 + @)]* + 2(V5 + i13)?
+ P01 + i) — (7 + )]
and
(W] — uy)? + K (u + uy)’
=[(h +iy) — (7 + i))* +2(75 + 1)
+ K51+ d1y) + (7 + L)) (18)

where again ¥, and #, are the components of the probe’s
velocity and the velocity from the small-scale frozen field,
and k? describes the sensitivity of the wire to flow along its
length. It is assumed that the cross-wire probe is oriented
in the x;-x, plane, and k? is independent of flow angle (cf.

! Equation (16) has been simplified by noting that in statistically
homogeneous turbulence (see Monin and Yaglom 1975)

Ou, Otig
Ox, Ox.

Qi Oil,
o Ox, Ox,

Tutu and Chevray 1975; Champagne et al. 1967). It follows
that the velocity components measured by the cross-wire
probe are given by

W'=Y+ iy + 72 + ) + B2 (73 + 15) 2] 2

+ (7 — vy — ﬁz)z + h2(173 + ﬁ3)2]1/2} (19)
and
ult = L[y + i + 7 + ) + B2 (7 + 115)2]/?

— [+ 0 — 72— i1,)” + B2 (75 + i13)°] 7} (20)
where
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The time derivatives of these measured velocities are
given by
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du, dﬁz 25, diis probe, with two wires aligned in the x; direction at
x | (V1 = ¥2) = hv i + A/28,, can be written as

dr dt S dr
Uy oV, /0t 5 R4 A28 — (A J26
+O<n> +O<@ﬁa/dt> ' (23) (a—2> _ UG+ A/20) A uP(E = 8/200) o0

Following the approach outlined for the single-wire mea-
surements, it can be shown that the variance of the velocity where u}" is the velocity measured by each of the wires.
derivatives measured with a cross-wire probe using Tay- These velocities can be approximated using a binomial

lor’s hypothesis can be approximated by expansion, i.e.,

aul 2 ? 2 7 61:11 2 aul aul
it =|1+L_ 3 it 3 _|_
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(14 k%) U? 0x;0x; (1 +Kk?) U?20x;0x, (14 k?) U? 0x;3 0x; U3

and
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The underbraces in these equations again highlight U = (~2 5 )1/2
terms that are not included in previous estimates of the ! "2

moments measured using Taylor’s hypothesis (e.g., Vi u 1217) ul 12
George et al. 1989), and thus represent the error caused 1+2 2+ 72 + 22 +2- Py + 747

by the contribution from the cross- ﬂow velocity. It is LRGN
evident that the estimate of (Ju;/dx;)* measured with = (#+ VZ)I/Z[ Vi th

the single- and cross-wire probes differ when the effect (2 + )2 (7 + 2)/?

of the cross-flow velocity _is con51dered Thus, the error 5 P 2

in the measurements of (Ou;/0x;)* depends on the + 2 2 + 0(%‘)} (27)
transducer used in the measurements, as one would (7 + vz)l/ 2 (2 + 172)1/ 2 V;

expect. This differs from the previous analyses where
predicted errors were independent of the transducer
used in the measurements.

Thus, the lateral derivative measured by the parallel-wire
probe moving through the small-scale frozen field can be
written as

6141

3 0x
Parallel-wire measurements 2/m
The unsteady convection of the small-scale motions by _ " (11 (% + A/2652) — U1 (%0 — A/2652)]
the large-scale motions also introduces an error in o [ + 7 ]1/2 A
measurements of (Ju;/0x,)” with a parallel-wire probe b2 o o
because the wires in the probe measure a contribution V2 [t (i +A/2012) — i (i — A/2012)]
from the cross-flow velocity. The error in these mea- [V? + ¥ ]1/2 A
surements can be approximated by considering a par- - AV

. . o Vo
allel-wire probe moving through a frozen small-scale + O( ) < )
field. The lateral derivative measured by this moving Vo A

(28)



Following the approach outlined in the previous sections,
the variance of this measured derivative can be written as

Qur)”
aXZ

cos(k2 )]

@y, dk, dk, dk
Vl + /// 11 1 2 3
/ / / — cos( k2 [ = costkoA)l g, 4k, dk dks
Vl —|— V2
2”2 / / / — cos{ kz 1= coskaBl g, g, dk, d,
(29)

It is clear that this expression reduces to the expression
developed by Wyngaard (1969) as the turbulence intensity
approaches zero. Thus, this expression includes both the
error caused by the separation distance between the wires
and the error introduced by the contribution from the
cross-flow velocity.

It is useful to let the separation distance approach zero
in order to isolate the cross-flow error. In this case,
Eq. (29) reduces to

dup\ 2 7 oy 2+ 3 duy\ 2
6x2 m_v%+17% axz 0%4’17% 6x2

Ou; Ou,

Viva

24 2
Vi + V5 Ou, 0x

B PR R 178 WA S K B 17}
U2 U3 0x; U2 U3

The coefficient of the first term is smaller than unity, so
that the contribution from the actual derivative moment in
the flow is attenuated as the turbulence intensity of the
flow increases. The second term, which is normally the
larger of the remaining terms, is positive, so it will offset a
portion of this attenuation. Normally, though, it will not
completely offset the attenuation, so the measured
derivative moment will usually underestimate the actual
moment.

4
Estimate of errors in typical measurements

It is useful to evaluate the relative importance of the error
introduced by the cross-flow velocity, using data from a
typical flow. Detailed measurements in the self-similar
region of a high-Reynolds-number axisymmetric jet were
reported by Hussein (1988), Hussein et al. (1994), and
George and Hussein (1991). These can be used to evaluate

the errors predicted with the expressions developed
herein, as well as from the corresponding expressions of
previous analyses, which ignored the contribution of the
cross-flow velocity (e.g., Lumley 1965; Wyngaard and
Clifford 1977; George et al. 1989). The difference between
these two calculated errors is the error caused by the
cross-flow velocity or the “cross-flow” error.

The velocity moments in the aforementioned jet were
measured using both a flying hot wire and a laser Doppler
anemometer, and the measurements from the two tech-
niques were shown to be in good agreement (Hussein et al.
1994). They also measured the velocity derivative mo-
ments with a flying hot-wire probe to reduce errors as-
sociated with the use of Taylor’s hypothesis and the cross-
flow error. The experiment was designed so that the length
of the wire and the separation distances in the probes were
only slightly larger than one Kolmogorov length scale. The
major source of error in the experiment was precisely
defining the effective separation distance between the
wires, particularly when multiple angle-wire probes were

required to measure the moment (e.g., (u,/0x;)%)
Hussein (1988) analyzed this source of error and reported
that the experimental uncertainty in the measurements
was 15-20%, with smaller uncertainties in the single-wire
measurements. Further details about the experimental fa-
cilities and the experimental procedure are given by
Hussein (1988), George and Hussein (1991), and Hussein
et al. (1994).

George and Hussein (1991) showed that the measured
derivative moments satisfied the conditions for “locally”
axisymmetric turbulence with an axis of symmetry in the
mean-flow direction. They deduced the four invariants
that determine all the of velocity derivative moments for
this case by curve-fitting the measured derivative mo-
ments. The predicted errors examined here were evaluated
using both the measured derivative moments and the de-
rivative moments computed from the invariants reported
by George and Hussein (1991), shown in Fig. 1. Both
approaches yielded very similar results, and all the sig-
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Fig. 1. Derivative moment profile in the region of the round jet
considered here computed from the invariants reported by

George and Hussein (1991): — (6u1/6x1)2 ; O (6u2/6x2)2; @)
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nificant results outlined here were observed for both cases.
It was also found that the significant conclusions were
unaffected by variations in the derivative moments within
the range of the reported experimental uncertainty.

The velocity and velocity derivative moments from the
round jet are used to estimate the errors that would occur
in the mean-square velocity derivatives measured with
stationary hot-wire probes in the jet. The errors are ex-
amined in the region r/(x — x¢) < 0.075, where
U/U,, > 0.7 and the local turbulence intensity varies
approximately from 25 to 35%. Outside this region, the
binomial expansions used to simplify the estimates of the
errors in this analysis are not accurate because the tur-
bulence intensity is too large.

In many experiments, far fewer velocity derivative
moments are measured than reported by George and
Hussein (1991). Therefore, it is often necessary to assume
that the flow is “locally” isotropic in order to approximate
the error in the measurements using Taylor’s hypothesis.
The accuracy of the error computed using this approach is
assessed here by comparing the errors for “locally” iso-
tropic turbulence and “locally” axisymmetric turbulence
predicted using the model developed in this analysis.

4.1
Single-wire measurements

The comparison of the predictions for the errors in

(0u, /0x;)* measured with a single wire is shown in Fig. 2.
The predicted errors for the current model, which includes
the effect of the cross-flow velocity, are only 20% smaller
than the error predicted using the previous models, which
ignored it. Thus, the cross-flow errors in these measure-
ments are not as large as the errors caused by the unsteady
convection of the small-scale motions. This difference
could be important if the data were to be corrected using
the errors predicted with the previous analyses. For ex-
ample, the results here indicate that measurements cor-
rected in this manner would under-predict the actual
moment by almost 10% at r/(x — xo) = 0.075 and by lar-
ger amounts at larger radii.
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Fig. 2. Comparison of the errors in (du; /0x;)* measured with a
single wire in the far field of the axisymmetric jet predicted (O)
with the current model, which includes the contribution from the
cross-flow velocity, and ([J) with the previous models, which
ignore the cross-flow velocity (e.g., George et al. 1989): — local
turbulence intensity, v/U
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Fig. 3. Comparison of the errors in (du; /0x; )’ measured using a
single wire for (O) “locally” axisymmetric turbulence and for (1)
“locally” isotropic turbulence. The predicted errors include the
cross-flow error: — local turbulence intensity in the jet, v/U

A comparison of the errors predicted using the current
model for “locally” isotropic turbulence and for “locally”
axisymmetric turbulence is shown in Fig. 3. The predicted
errors are nearly equal near the centerline, where the de-
rivative moments included in the expression for the error
approximately satisfy the isotropic relationships (cf.,
George and Hussein 1991). Away from the centerline,
where the smal-scale motions are more anisotropic, the
predicted errors for “locally” isotropic turbulence are up
to 15% smaller than those for “locally” axisymmetric
turbulence. The difference between the predicted errors is
also increasing with radius, so the difference is likely to be
even larger in the outer region of the jet.

4.2

Cross-wire measurements

A comparison of the predictions for the errors (du; /0x;)*
measured with single- and cross-wire probes in the round
jet is shown in Fig. 4. The predicted errors in the cross-
wire measurements for the current model were computed
using a value of k = 0.15 (cf., Tutu and Chevray 1975;
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Fig. 4. Comparison of the errors in (du; /0x;)* measured with
(O) a cross-wire probe and ([J) a single-wire probe predicted
with the current model, which includes the cross-flow error: A
errors in (Qu; /0x;)* measured with both probes predicted using
the previous models: — turbulence intensity v/U



Champagne et al. 1967). They are typical of the results for
the normal range of k. The errors predicted using the
previous model are also shown in the figure. A single curve
is shown for this case because the predicted errors are
independent of the measuring transducer when the effect
of the cross-flow velocity is ignored. It is clear, though,
that there are significant differences between the errors for
single- and cross-wire measurements when the contribu-
tion from the cross-flow velocity is considered. The errors
in the cross-wire measurements are up to twice as large as
the error in the single-wire measurements. It can also been
shown that, for a “locally” isotropic flow, the error in the
cross-wire measurements will be about twice the error in
the single-wire measurements. The errors in the cross-wire
measurements are much larger than in the single-wire
measurements because the cross-wire probe is more sen-
sitive to the cross-flow velocity and, as a result, the coef-
ficients in the expression for the error are much larger.
This is not unexpected, since the cross-flow errors in the
velocity moment u? measured with a cross-wire probe are
considerably larger than the errors in the single-wire
measurements. The results here show that it is more ac-
curate to measure (Ou; /0x;)” with a single wire.

The relative errors in (du, /0x;)* measured with a cross-
wire probe using Taylor’s hypothesis are shown in Fig. 5.
The errors predicted with the current model are up to 50%
smaller than the errors predicted using the result from the
previous models, which ignored the cross-flow error. Data
corrected using the error predicted in the previous ana-
lyses would under-predict the actual moment by 10% in
the entire region of the jet considered here.

The relative errors for “locally” isotropic turbulence
predicted using the current model are also shown in Fig. 5.
These errors are 50-70% smaller than the errors for “lo-
cally” axisymmetric turbulence. Much of this difference is
caused by the large deviation of the moment (du,/dx3)*
from the value expected for “locally” isotropic turbulence
(cf., Fig. 1). The other derivative moments do not deviate

moments. Hence, the large difference between the pre-
dicted error for “locally” isotropic and “locally” axisym-
metric turbulence is only seen in (Qu,/dx;)”. The term
(Ou,/0x3)” is also part of the error caused by the unsteady
convection velocity. So similar difference between the
error for “locally” isotropic and “locally” axisymmetric
turbulence would be observed in the predictions from the
previous models.

4.3

Parallel-wire measurements

The predictions of the errors in (du; /0x,)* measured with a
parallel wire probe in the round jet are shown in Fig. 6.
Here, the separation distance between the wires has been
set to zero in order to isolate the cross-flow error. The
errors for “locally” axisymmetric measurements do not
exceed 1% in the region of the jet considered here. The
predicted errors for “locally” isotropic turbulence are lar-
ger but do not exceed 5%. Thus, the errors caused by the
cross-flow velocity in measurements with the parallel-wire
probe are smaller than the errors in measurements using
Taylor’s hypothesis. In many measurements, this error will
also be smaller than the error caused by the finite separa-
tion distance between the wires in the probe. However, the
cross-flow and spatial resolution errors both act to reduce
the measured moment in most flows. Thus, it may be
necessary to consider both sources of error in high-
turbulence-intensity flows if care is being exercised to
minimize the error in the measured derivative moments.

44

Comparison of the predicted errors with measurements
George et al. (1989) measured (du; /0x;)” in the far field of
the round jet using both a stationary single wire and a
single wire moving through the flow on a rotating arm.
Flying the wire on the rotating arm increased the mean
velocity measured by the wire, thereby reducing the tur-
bulence intensity of the measured velocity. Therefore,

from “local” isotropy nearly as much, nor does (du,/0x3)*
appear in the expressions for the errors in the other
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Fig. 5. Comparison of the errors in (du,/0x;)* measured with a
cross-wire probe in the round jet predicted (O) with the current
model, which includes cross-flow error, () with_the previous
models, which ignore the cross-flow: A error in (du,/dx;)* for
“locally” isotropic turbulence predicted using the current model;
— turbulence intensity, v/U

(Ouy /0x,)* could be measured using Taylor’s hypothesis at
the same location with single hot-wire probes experiencing
two different turbulence intensities, and the difference in
the measurements could be compared with the predictions
from the models. In their comparison, George et al. noted
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Fig. 6. Comparison of the errors in (Ju; /0x,)* measured using a
parallel wire (with zero wire separation) for ([J) “locally” ax-
isymmetric turbulence and for (O) “locally” isotropic turbulence
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that the errors in the flying-wire measurements were
considerably smaller than those in the stationary-wire
measurements, and assumed the errors in the flying-wire
measurements could be neglected when they compared the
two measurements. They also assumed that the turbulence
was “locally” isotropic, and predicted that the normalized
difference between the measurements was given by

[(aul/axl)fn]sta _ [(aul/axl)fn]mov _
[(aul/axl)fn]mov

12 + 212 + 212
U2

(31)

where the subscripts “mov” and “sta” denote the moments
measured in the moving- and stationary-wire experiments,
respectively. They found reasonable agreement between
the predictions of the theory and the measurements.

However, as mentioned previously, later measurements
in the round jet showed the small-scale motions were not
“locally” isotropic, but rather were “locally” axisymmetric.
The errors in the flying-wire measurements were also
3-5%, so it is more accurate to incroporate the errors for
these measurements in the estimate of the normalized
difference yielding

[(6u1/ax1)3n]sta — [(aul/axl)fn]mov
[(aul/axl)fn]mov

[Uéov_l] w o+ (Btyrmu+ou
Uza U2+ 24 (B + 7+ n)ud + yu

(32)

When the effect of the cross-flow velocity is included in the
model f = 3,
-1

6141 2 aul ]
= (a—x) (ax) (33)
and

N
_ ()| (B y
n= 6—x1 ox, (34)

and when the cross-flow is ignored f =0, 1 = 0, and

- —— 1
6u1 2 (aul> g

7 (ax2> a-’Cl

George et al. (1989) performed their experiment in the

same jet used by Hussein et al. (1994) and George and

Hussein (1991), so these measurements can be used to

evaluate the predicted values for the normalized differ-

ences.

The comparison of the predictions for the two cases and
the measurements reported by George et al. (1989) is
shown in Fig. 7. The error bars indicate the uncertainty in
the predictions due to the experimental uncertainty in the
derivative moments. Noise was the primary source of error
in the single-wire measurements, other than error asso-
ciated with Taylor’s hypothesis that has been accounted
for in Eq. (32). This was discussed in detail in Hussein

(35)
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Fig. 7. Comparison of the relative difference between (du; /0x; )*
measured with a stationary and flying hot-wire (O) predicted
with the current model, which includes the cross-flow error, ((J)
predicted with the previous models, which ignore the cross-flow
error, and (A) calculated from measurements reported by George
et al. (1989): — turbulence intensity, v/U

(1988), who concluded that the error caused by noise in
these measurements was negligible. The noise in the fly-
ing-wire measurements was larger than in the stationary
measurements, so the actual normalized differences would
be larger than those presented in Fig. 7 if noise were a
significant factor.

It is clear that the predictions from both models are
smaller than the measured differences in the inner portion
of the jet. The predictions and the measured differences
are in better agreement when r/(x — xo) > 0.4. Overall,
however, the agreement between the predictions from both
models and the measurements is not particularly good,
since the discrepancies near the centerline exceed levels
that could be explained by experimental uncertainty. This
may represent a shortcoming of the theory or a problem
with the data. It would be useful to perform this com-
parison in another flow, but the measurements reported by
George et al. (1989) seem to be the only direct measure-
ments of the error that occurs in velocity derivative mo-
ments measured using Taylor’s hypothesis. Mi and
Antonia (1994) recently performed a similar experiment
for the scalar derivative moments and found better
agreement between the measurements and the predictions
from the theory.

4.5

Effect of finite wire length

The finite length of the wires in the probes has been ig-
nored so far in the analysis. Following the approach out-
lined by Wyngaard (1968), it is straightforward to show
that the mean- quﬁy derivatives in the expressmn
for the value of (Qu;/0x;)* measured with a single-wire
(Eq. 16) should be written as

sin(ksl3/2)
///{ ksl;/2 ] kik;j®y, dk; dk, dks

(36)
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where I5 is the length of the wire in the x; direction. The
averaging along the wire will reduce the derivative moments

The cross-flow errors were larger in measurements with
cross-wire probes. For example, the overall errors in

in the x; and x, direction, such as (u; /0x,)* or (du; /0x; )%,
by only 3-8% for wires with lengths from 3 to 65. It will
reduce the derivative moments in x;_direction by a larger
amount. For example, it will reduce (du; /dx3)* by ap-
proximately 10-25% when the length of the wire is 3-6# (cf.,
Wyngaard 1969; Ewing et al. 1995). The term that includes
this moment contributes 30-40% of the predicted error in
(Ouy /0x,)*. Thus, it may be necessary to consider the length
of the wire when long wires are used in the measurements.
Similar results could developed for the measurements with
the cross-wire and parallel-wire probes.

5

Summary and concluding remarks

It is well known that significant errors occur in the velocity
moments measured with single- or cross-wire probes in
high-turbulence-intensity flows because the probes cannot
exactly resolve the velocity components from the flows. A
similar error occurs in the velocity derivative moments
measured with these probes because they also do not ex-
actly resolve the velocity components from the small-scale
motions. Estimates of the error this causes in the value of
(0u; /3x,)* and (Qu,/0x;)” measured with single- and
cross-wire probes using Taylor’s hypothesis and in

(Ouy /0x,)* measured with a parallel-wire probe were de-
veloped here. These estimates also include the errors in-
troduced by the unsteady convection of the small-scale
motions in measurements using Taylor’s hypothesis and
the size of the measuring transducer in measurements with
parallel-wire probes. Thus, the estimates of the errors
developed here are more general than previous estimates
of the errors in measurements with Taylor’s hypothesis
(e.g., Lumley 1965; George et al. 1989) or in measurements
with the parallel-wire probe (e.g., Wyngaard 1969). The
approach outlined here can also be extended to higher-
order derivative moments measured with these probes.

Measurements from the far field of a high-Reynolds-
number round jet reported by Hussein et al. (1994) and
George and Hussein (1991) were also used to estimate the
size of the different errors that would occur in the deri-
vative moments measured with stationary wires in the jet.
The predicted errors were computed for the range
0 < r/(x — x¢) < 0.75 where the turbulence intensity var-
ied from 25 to 35%. Outside this range, the binomial ex-
pansions used to simplify the expressions for the predicted
errors developed here are not accurate.

The estimates of the cross-flow error in (du; /dx;)*
measured with a single wire, using Taylor’s hypothesis,
were only about 20% of the error caused by the unsteady
convection velocity. The cross-flow error also decreased
the overall error, so that the predictions from the previous
analyses yielded conservative estimates of the overall er-
ror. The cross-flow error could be important, however, if
measurements in a high-turbulence-intensity region were
corrected using errors predicted from the previous ana-
lyses. For example, measurements at r/(x — x9) = 0.075 in
the jet corrected in this manner would under-predict the
actual moments by 10%.

(Ouy /0x,)* measured with a cross-wire probe were up to
twice as large as the errors in the single-wire measure-
ments when the effect of the cross-flow velocity is con-
sidered. Thus, it is simpler and more accurate to measure
(Ouy /0x,)* with a single-wire probe. The estimates of the
cross-flow errors in measurements of (du, /0x; )* were also
up to 50% of the error caused by the unsteady convection
velocity. The cross-flow error did reduce the overall errors,
though, so predictions from the previous analyses are
again conservative. However, measurements corrected
using errors predicted with the previous analyses would
under-predict the actual moment by 10% in the region of
the jet considered.

It was also found that the errors predicted by assuming
that the flow was “locally” isotropic could yield poor es-
timates of the actual errors in some circumstances. For
example, the overall errors in measurements of (Ou,/0x;)*
predicted assuming the flow was “locally” isotropic tur-
bulence were smaller than 10%, while the predicted errors
for “locally” axisymmetric flow were 10-40%. Much of this
difference is caused by the large departure of (du,/dx3) in
the round jet from the value for “locally” isotropic tur-
bulence. This term is part of the error caused by the un-
steady convection velocity, so similar differences would
occur in the errors predicted using the previous analyses.
The large deviation from isotropy may not be observed in
all flows, but the results here show that, when it does
occur, the errors predicted using the simpler assumption
of “locally” isotropy may significantly underestimate the
actual errors.

The cross-flow errors in the measurements of
(Ouy /0x,)* with a parallel-wire probe were considerably
smaller than the errors in the measurements with Taylor’s
hypothesis. These errors did not exceed 1% in the region
of the jet considered here. The predicted errors for “lo-
cally” isotropic turbulence were also less than 5% in this
range. Thus, the cross-flow errors will often be smaller
than the errors caused by finite separation between the
wires in the parallel-wire probe. However, both errors
reduce the measured moments in most flows, so it may be
necessary to consider both when estimating the overall
error in the parallel-wire measurements.

The accuracy of the predictions from both this analysis
and the previous analyses were tested by comparing them
with direct measurements reported by George et al. (1989).

In this experiment (du,/0x;)* was measured using Tay-
lor’s hypothesis with both a stationary wire and moving
wire at the same point in the round jet. The relative dif-
ferences between the measured moments were compared
with the predictions from the analyses. Although there was
qualitative agreement between the measurements and
predictions from both models, there were some dis-
crepancies that exceeded the experimental uncertainty.
Further experimental investigations should be performed
to determine whether the observed discrepancies are
caused by errors in the measurements or shortcomings in
the models.
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