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I lAn alternative to the traditional forms for hot-wire calibrations is presented 
that expresses flow velocity as a function of voltage in the form of a polyno- 

N ~;~=0 A~ Nu n, where the coefficients are ve- mial U = X~=o A,,En or Re = 
locity-independent. These forms have the advantage that the velocity can be 
calculated directly (and recursively) from the measured voltages once the co- 
efficients are determined--a significant advantage for computer implementa- 
tion. Moreover, the coefficients occur linearly and can be determined by lin- 
ear regression. Since the primary errors in calibration are usually in the 
determination of velocity whereas the voltage can be more accurately deter- 
mined, the regression is properly directed to minimize the effect of measure- 
ment error, unlike the King's law expressions and polynomials expressing 
voltage as a function of velocity. Finally the quasi-linearization of the above 
expressions is discussed. 
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I N T R O D U C T I O N  

The purpose of this article is to discuss the use of  a polynomial 
for hot-wire velocity calibration and to present some of its 
advantages over the more commonly used King's law expres- 
sions. While some of  these advantages are well known (for 
example, ease of  implementation on a computer), others are 
not so well known. Moreover, there is a natural hesitancy 
among many in the flow-measuring community to deviate from 
King's law linearization because of its long-standing accept- 
ance. While this may be reasonable when using analog 
linearizers that may already be at the disposal of  the investiga- 
tors, it is suggested here that there are definite advantages to be 
gained by using a polynomial scheme--both for ease of 
implementation and for accuracy. This is especially true when 
implementing a digital linearization or using a quasi-lineariza- 
tion technique. 

K I N G ' S  L A W  

In 1906 King [1] obtained the following analytical solution to 
the problem of heat transfer from potential flow around a 
cylinder: 

Nu=A +B Re 1/2 (1) 

where 

Nu = hd/k (Nusselt number) (2) 

Re = Ud/u (Reynolds number) (3) 

h = qw (heat transfer coefficient) (4) 
Tw-To 

and where d is the wire diameter, k is the thermal conductivity 

of the fluid, ~ is the kinematic viscosity of the fluid, qw is the 
heat transfer rate per unit area from the wire, and Tw and Ta 
are the wire surface and ambient fluid temperatures, respec- 
tively. 

While potential flow around a cylinder has little to do with 
the flow around a typical hot wire (10 -2 < Re < 100), the 
form of King's law has been retained in many of the 
subsequent attempts to establish empirical laws. These were 
reviewed in detail by McAdams [2] and Collis and Williams 
[3]. A commonly used expression is a composite of these due 
to Kramers [4] and Collis and Williams (cf Hinze [5], namely, 

Nu Tw =A PrP+B Pr o Re n (5) 

where Pr is the fluid Prandtl number and (Tw/Tf) m is a loading 
factor that compensates for the variation in the thermal 
properties of the fluid in the thermal boundary layer of  the 
wire. Typically m = 0 .17 ,p  = 0.2, q = 0.33, and 0.45 < n 
< 0.5, the latter depending on Reynolds number. Additional 
terms or alternative expressions are needed at very low 
Reynolds numbers where the character of the equations is 
dominated by viscosity and/or free convection. An example of 
the former is the linear term often added at low velocities; the 
latter is illustrated by the Oseen-type logarithmic calibration 
used by Collis and Williams [3] and George et al [6]. 

In rarefied gases or with very fine wires (less than 1 #m 
diameter is air), the fact that the wire diameter and the mean 
free path h are of  the same order of  magnitude is responsible 
for a breakdown in the continuum approximation. This can 
give rise to a dependence of  the calibration on Knudsen 
number K = d/)~ (see for example, Collis and Williams [3]). 
Additional problems can occur at very low velocities where 
natural convection from the wire can dominate convective 
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effects, and effectively limit the lower range of applicability of 
the calibrations. These have been discussed in some detail by 
Hollasch and Gebhart [7] and Warpinski et al [8]. 

T H E  ADVANTAGES OF A POLYNOMIAL 

While the above expressions (and others similar to them) can 
be used in a variety of applications with success, they are 
always awkward and difficult to implement--both to obtain the 
calibration curve and to apply it. The principal reason for this 
is the manner in which the voltage depends on the velocity. 
This is easily seen by the constant ambient temperature version 
of Eq. (5), which reduces for a given wire to 

E 2 = A  + BU" (6) 

where E is the bridge top voltage typically measured in 
constant-temperature anemometer (CTA) applications. 

Performing the calibration is complicated by the fact that the 
determination of A is not as simple as measuring E with U = O 
because of the natural convection effects mentioned above. 
This uncertainty is carried through the analysis since B and n 
can be determined only after A is determined and subtracted. 
Moreover, it should be noted that the usual linear least-squares 
type of analysis is not applicable to this expression--first, 
because it is not a linear equation and, second, because the 
principal uncertainty in the calibration measurements is usually 
in U and not in E. 

Implementation of even the simple form of King's law given 
in Eq. (6) is not straightforward either. Calculating the 
velocities from the measured voltage requires a time-consum- 
ing process on a computer, and analog conversion requires 
sophisticated circuitry. 

The idea and practice of using a polynomial in both digital 
and analog linearization is not new. Cbeesewright [9], for 
example, discussed digitally linearizing hot-wire signals on a 
large computer, while commercial polynomial lincarizers have 
been available for a number of years. 

In its simplest form, the velocity is expressed as the sum of 
powers of the voltages, that is, 

N 

u= ~ A.e" (7) 
n=O 

The principal advantages are twofold: First, a linear least- 
squares analysis an be directly applied since the coefficients 
occur linearly and since the principal uncertainty in the 
observations is on the left, namely U. Second, application of 
the calibration to measured data is straightforward and 
involves only recursive multiplication of the measured volt- 
ages. 

An alternative form that is equivalent to Eq. (7) but is more 
convenient for analog implementation uses the offset voltage E 
- -  E r e f  instead; thus, 

N 

U= ~ An(E-Eref) n (8) 
n=0 

A good choice for Eref is either the "zero"  velocity voltage or 
a midrange voltage. [Note that for reasons that will become 
clear in the next section it is sometimes preferable to work with 
Eq. (7) even if an offset is used prior to digitization. This is 
easily accomplished by adding the offset to the numbers stored 
in the computer.] 

Because of the convenience of using a linear least-squares or 
other statistical algorithm for determining the coefficients 
(these algorithms can be carried out even on a hand calculator), 
it is no longer necessary to try to infer or measure the 
anemometer output at zero velocity. Thus the calibration can 
be performed entirely in the region where the wire will be 
used, and the natural convection regime avoided entirely. (In 
fact, this is the manner in which any calibration should be 
used, regardless of curve fit employed.) 

It is, of course, no surprise that polynomials can also 
provide superior fits to the calibration data, since by increasing 
the order of the polynomial the number of adjustable coeffi- 
cients is also increased. However, our experience suggests that 
there is little to be gained by going beyond the fourth order, 
that is, 

U = A o + A 1 E + A 2 E Z + A 3 E  3 +A4E 4 (9) 

Independent studies by Wlezien [10] have also shown this 
choice to be superior over a wide range of velocities to other 
calibration commonly used methods. 

A POLYNOMIAL H E A T  TRANSFER LAW 

Equations (7)-(9) have the principal disadvantage that their 
coefficients are temperature-dependent. This can be contrasted 
with Eqs. (1) and (5), which are presumed valid over a wide 
range of temperatures. There is, of course, no reason why a 
"heat transfer law" that is based on a power law cannot be 
postulated. Therefore we propose that the Reynolds number be 
expressed in half-powers of the Nusselt number, that is, 

N 

Re = Z Cn Nu n/2 (10) 
n=O 

The coefficients Cn are now temperature-independent, and the 
temperature dependence enters entirely through the variations 
of u and k in the Nnsselt and Reynolds numbers and through 
the direct dependence of Nu on Tw - Ta. 

We have had great success with the fourth-order polynomi- 
als in Nu~/2; that is, 

Re= C0+ C1Nul/2 + C2 Nu+C3 Nu3/2+ C4 Nu 2 (11) 

The Reynolds number is evaluated at the gas temperature, 
while the Nusselt number is evaluated at the film temperature 
Tf = (Tw + Ta)/2; that is, v = va, while k = kf.  [Note that 
Nu la ot E for fixed temperatures, and thus Eq. (11) reduces to 
Eq. (9) for this case.] 

An example of a single-wire calibration (Dantec type 55P76 
gold-plated 5 pm wire) is shown in Fig. 1. A second example is 
the x-wire (Dantec custom-made probe, gold-plated 2.5 t~m 
wires) data shown in Fig. 2. Both of these calibrations were 
carried out for conditions corresponding to those present in 
buoyant plume experiments where the local flow temperature 
varied over 20"C and where flow velocities ranged from 0.12 
to 1.5 m/s. (Note that for the x-wire an angle calibration needs 
to be done in addition to the Re-Nu "/2 calibration.) 

The curves shown in Figs. 1 and 2 were obtained by a linear 
regression fit to the calibration data. Generally, it was possible 
to achieve a maximum relative deviation (between predicted 
and measured velocities) of 0.5 %, which was well within the 
accuracy of the velocity measurement in the calibrator. Note 
that it is important in most cases to minimize the relative error 
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F i g u r e  1. Calibration curve for the Dantec 55P76 probe. 

in the curve fitting, and not the absolute error, since otherwise 
large errors can result at the lower velocities. 

Because of slight differences in length and diameter, the 
calibrations for the two wires did not coincide. These 
parameters were not measured directly, and there was un- 
doubtedly some deviation from the manufacturer's stated 
values. 

Since the wires are calibrated individually, this is not 
important, although it would have been had a general result (as 
for a wire of infinite length) been desired. Two parameters that 
were difficult to measure directly were the sensor resistance 
and the coefficient of thermal resistivity (and hence the exact 
wire temperature)--the former because there was no sure way 
to short the probe without breaking it, and the latter because of 
a slight dependence on annealing history. Therefore these 
parameters were adjusted for each wire to give the best 
collapse of the data at all temperatures. A typical variation was 
less than 5 %. 

While there may be other polynomial expressions that can be 
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Figure 2. Calibration curve for the Dantec custom-made probe, 
which had an x-wire and a temperature wire. 

used successfully, the use of polynomials in Nu'/2 is particu- 
larly convenient for digital analysis since Nu ~/2 -~ E, the 
anemometer bridge voltage. The kinematic viscosity and the 
thermal conductivity of air are conveniently calculated from 
the empirical expressions 

I , ' ( T ~  h7 
- - =  - -  ( 1 2 )  ~e~ \ T~ef / 

and 

k ( T ~  0"7 
kre--~-- \ ~ J (13) 

or alternate expressions. The wire temperature Tw is fixed by 
the feedback amplifier (constant-temperature mode), and Ta 
can be separately measured by a parallel resistance wire, 
thermocouple, or thermistor. Note that care must be taken in 
the probe design to ensure that the thermal sensor is not 
contaminated by the thermal wake of the velocity wires, and 
yet all the sensors are close enough to be measuring the same 
fluctuation. 

In the experiments of Beuther [11] and Shabbir [12] using x- 
wires, both the ambient temperature and the velocity anemom- 
eter bridge voltages were sampled simultaneously and Eq. (11) 
was used to calculate the instantaneous cooling velocities on 
each wire. This information was subsequently combined with 
the angle calibration to yield the two desired instantaneous 
velocity components. By first calculating Nu 1/2 and then using 
recursive multiplication, the calculation could be rapidly 
performed. 

The effect of including a temperature loading factor in the 
Nusselt number, i.e., 

Re=~ Cn [Nu(~/)°"7] n/2 (14, 

n = 0  

has also been investigated. This approach was not as successful 
as the simpler and more direct approach outlined above and is 
not recommended. 

APPLICATION TO T H E  QUASI-LINEAR 
T E C H N I Q U E  

Sometimes analog linearization is avoided entirely and one 
works only with averaged signals. Such a procedure is called 
quasi-liuearization. Due to the approximate nature of this 
method, it should not be used when one has access to a digital 
computer and an A/D converter. However, there are situations 
where the quasi-liuearization technique can be useful, espe- 
cially where on-line computer data acquisition is not possible. 

The usual quasi-linearization begins with King,s law type 
expressions. For example, by expanding Eq. (6) about average 
values, the following averaged equation is obtained: 

# 
(E+e)2=E2(I+-~)=A+B(U+u)n 

= A + B O  2T 0 2 (is) 

where terms above u2/I] r2 have been neglected. By subtracting 
this equation from the instantaueo__us equation, squaringand 
averaging, expressions for O and u 2 in terms of ~" and e 2 can 
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be obtained (cf Rao and Brzustowski[13]). Such expressions 
are, of course, valid only as long as u2/O ~ is truly negligible; 
in other words, only in low-intensity turbulent flows. 

Unfortunately, for many flows of interest, u-'Z/t.72 is not 
negligible--for example, the turbulent jet--and the only 
recourse is to linearize before averaging. The polynomial 
calibration scheme proposed above in Eqs. (7) and (10) open 
new possibilities for quasi-linearization that do not require that 
powers of the turbulence intensity remain small but impose 
only the less restrictive condition that powers of e--r//~ 2 remain 
small. This represents a substantial improvement because 
typically 

u ~ 
~,-~ ~ 0- ~ (16) 

This is because of the fact that the anemometer set voltage J~0, 
which is included in/~, is usually much larger than "v~. 

From Eq. (9) for a constant-temperature flow, it follows 
from decomposing E and U into mean and fluctuating parts and 
averaging that 

O=Ao+ AII~ + A2(F.2 +e2) + A3(tEa + 3~e2 +e 3) 

+ A4(/~ 4 + 6j~2e 2 + 4/~e 3 +e  4) (17) 

By subtracting this from Eq. (9), an equation for the 
fluctuating velocity can be obtained as 

U =Ale+A2[2]~e+ (e 2 -e2)]  

+A3 [3E2e + 3~'(e 2 - e  2) + (e 3 -e3)] 

+ A416~2(e2-e2)+4E3e+4E(e3-e3)+(e4-e4)] (18) 

If  all terms above the second order are assumed negligible, Eq. 
(17) for the mean velocity reduces to 

/ 6 ~ ' ~  
+ (19) 

Typically in the experiments described later,/~ = 3.4 V while 
e ~  --- 100 mV, so the neglected terms are at most 3% of the 
second-order terms which are themselves less than 1% of the 
zeroth-order terms and could also be neglected. 

By squaring and averaging Eq. (18) for the fluctuating 
velocity and again ignoring terms of order higher than the 
second, the mean square fluctuating velocity can be expressed 
as 

2 3 2 u2=[AI+A2(2E)+A3(3E )+A4(4/~ )]e (20) 

Additional terms in e3//~ 3 could be retained; however, in many 
applications this seems u~__~essary as this quantity is almost 
always small compared to e2//~ 2. 

Equations (19) and (20) make it clear that accurate measure- 
ments of the mean and rms turbulent velocities can be made 
with the quasi-linearization technique by measuring only the 
mean and rms anemometer voltages. This is true even in flows 
of relatively high turbulence intensities ( u ' / O  ~ 1), because 
of the relatively low value of e ' / /~ .  Thus, the polynomial 
linearization scheme possesses significant advantages when 
quasi-linearization techniques must be used. 

Q U A S I - L I N E A R I Z A T I O N  I N  T H E  P R E S E N C E  OF 
T E M P E R A T U R E  F L U C T U A T I O N S  

The ideas expressed above can also be applied to the general 
heat transfer law, Eq. (11), to yield a quasi-linear result that is 
valid even when the temperature is also fluctuating. This 
follows by averaging Eq. (11) to obtain 

R-e=B0+B1 Nul/2+B2 N-u+B3Nu3/2 +B4 Nu 2 (21) 

If the temperature dependence of the fluid properties is ignored 
and the analysis is restricted to modest temperature fluctuations 
(relative to the absolute temperature, = 300 K typically), the 
Nusselt number can be written as 

CtE 2 
Nu = - -  (22) 

Tw- T 

where C1 includes the missing terms from Eqs. (2) and (4) and 
is assumed constant, and Eu denote the anemometer output. 

Expanding, we have 

( /~,+e,)  2 
Nu = CI (Tw- i")[1 - t / ( T w -  T)] (23) 

where t represents the fluctuating temperature. Note that the 
average wire overheat ratio is given by (Tw - ~r")/~ and is 
normally greater than 0.5. 

By expanding the denominator using the binomial theorem 
and neglecting all terms of order higher than the second, it can 
easily be shown that the terms of Eq. (21) can be represented 
by the expression 

Nun'2 --- \ rw- :rj 

from which the Reynolds number can be readily evaluated. 
The mean velocity can be calculated from 

O= d {R-~} (25) 

By subtracting (21) from (11), an equation for the fluctuating 
Reynolds number ud/v c a n b e  obtained. After squaring and 
averaging, an equation for u 2 can be obtained. The final result 
is 

-- d { B2 [Nu - (Nu 1/2)21 + B~ [Nu 2 - (N'-~)21 

+ B 2 [ N ~ u -  (~u - -~ )  2] + B 2 [ N u  4 - (Su2) 21 

3/2 I/2 2 1/2 + 2BIB2(Nu - N u  Nu) + 2BIB3(Nu - Nu Nu3/2) 

+ 2Bt B4(Nu 5/2 - Nu I/2 Nu 2) + 2B2B3 (Nu 5/~ - ~ Nu 3/2) 

+ 2B284(N-U'~u 3 -  ~ Nu 2) + 2B3B4(Nu 7/2 - N u  3/2 Nu2)} 

( /6)  

To obtain an expression for the heat flux ut, first equations for 
the fluctuating temperature and fluctuating velocity are ob- 
tained. These are then multiplied and averaged to obtain 

vA2 ut=--~- (BI Nu I/2 el+B2 Nu et+B3 Nu 3/2 et+B4 Nu 2 et) (27) 
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Table 1. Comparison of Quasi-linearization Results with Those Computed from Instantaneous Measurements in a Turbulent Plane 

U(m/s) u--i 

Digital Quasi- Percent Digital Quasi- Percent 
u ' / U Technique linearization Error Technique linearization Error 

0.330 0.7468 0.7185 - 6.05 0.881 0.824 - 6.46 
0.336 0.7650 0.7259 - 5.10 1.145 1.091 - 4.41 
0.476 0.558 0.518 - 7.16 1.398 1.282 - 8.29 
0.652 0.342 0.328 - 4.10 0.883 0.776 - 12.1 
0.940 0.115 0.1086 - 5.50 0.174 0.128 - 26.0 

Where Nun/2et can be obtained by multiplying the expression 
for Nu ~/2 by et and then averaging. The result is 

( C1 ) , /2(e__~# " ~'~e;_~" 2 
Nun/2 et=n ~ ~-1+ 2(Tw- T) / (28) 

The constant A2 in Eq. (27) is the calibration constant for the 
temperature wire, ie, 

T=A~ +A2et 

Thus a single anemometer used in conjunction with a fast 
thermometer (eg, a resistance wire), d.c. and rms voltmeters, 
and either a multiplication circuit or summing or differencing 
amplifiers can yield accurate measurement of  not only O and 
u - x  but also ~P, t 2, and ~ ,  even when the turbulence intensity is 
relatively high. A procedure for achieving this was imple- 
mented by Ahmed [14]. 

Table I shows an evaluation of the quasi-linearization 
method based on Eq. (11). The results were obtained in a 
buoyant plume by direct linearization of the data using Eq. 
(11), and by quasi-linearization. The digital technique is 
considered standard for comparison purposes. Even the sec- 
ond-order moments are seen to be accurately measured for all 
but the highest turbulence intensities, a real surprise consider- 
hag the total disregard of  the third moments. 

USEFULNESS 

A method for hot-wire calibrations has been presented that 
expresses flow velocity as a polynomial function of voltage. 
For a nonisothermal flow the Reynolds number is expressed as 
a function of  the Nusselt number. Since primary errors during 
calibration are in the determination of velocity and not of  
voltage, the linear regression for such polynomials is properly 
directed to minimize the effect of measurement error. Another 
advantage of  using such calibration relations is that there is no 
longer a need to infer the anemometer output for zero velocity. 

Quasi-linearization of the above relations allows the calcula- 
tion of the mean and turbulent quantities from the averaged 
anemometer output. For turbulence intensities of up to 50%, 
the error in the calculation of second moments was only 10%. 
However, it should be kept in mind that due to the approximate 
nature of  this method, it should be used only when an on-line 
computer and an AID converter are not available. 

The work reported here formed a portion of the Ph.D. dissertations of 
P. D. Beuther and A. Shabbir. The research was supported by the National 
Science Foundation, Division of Atmospheric Sciences under grants ATM 
78 08442 and ATM 80 23699A01. 
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NOMENCLATURE 

A empirical coefficient, dimensionless 
A~ empirical coefficient in Eqs. (7), (8), dimensionless 

B empirical coefficient, dimensionless 
C~ empirical coefficients in Eq. (10), dimensionless 

d wire diameter, m 
E CTA output voltage, V 

E0 CTA output voltage at hypothetical zero velocity, 
V 

h heat transfer coefficient defined by Eq. (4), W/(m 
K) 

k thermal conductivity of fluid, W/(m K) 
K Knudsen number ( =  d/X), dimensionless 
m exponent in temperature loading factor, Eqs. (5), 

(14), dimensionless 
Nu Nusselt number defined by Eq. (2), dimensionless 

n empirical exponent, dimensionless 
P empirically determined exponent in Eq. (5), 

dimensionless 
q empirically determined exponent in Eq. (5), 

dimensionless 
heat transfer rate per unit area from wire, W/m 2 
Reynolds number def'med by Eq. (2), dimensionless 
fluctuating ambient temperature, *C 
fdm temperature [ =  (Tw + Ta)/2], *C 
wire temperature, *C 
temperature of ambient fluid, *C 
kinematic viscosity, m/s 
mean free path, m 

REFERENCES 

1. King, L. S., On the Convection Heat Transfer from Small Cylinders 
in a Stream of Fluids. Determination of Convection Constants of 
Small Platinum Wires with Application to Hot-Wire Anemometry, 
Phil. Trans. Roy. Soc. London, 214A, 373-432, 1914. 

2. McAdams, N.H., Heat Transmission, McGraw-Hill, New York, 
1954. 

3. Collis, D. L., and Williams, M. J., Two Dimensional Convection 
from Heated Wires at Low Reynolds Number, J. Fluid Mech., 6, 
357-384, 1959. 

4. Kramers, H., Heat Transfer from Spheres to Flowing Media, 
Physica, 12, 61-120, 1946. 

5. Hinze, J. O., Turbulence, McGraw-Hill, New York, 1975. 
6. George, W.K., Alpert, R. L., and Tamanini, F., Turbulence 

Measurements in an Axisymmetric Buoyant Plume, Int. J. Heat 
Mass Transfer, 20, 1145-1153, 1977. 

7. Hollasch, K., and Gebhart, B., Calibration of Constant Temperature 
Hot-Wire Anemometers at Low Velocities in Water with Variable 
Fluid Temperature, J. Heat Transfer, 940), 17-22, 1972. 

8. Warpinski, N. R., Nagib, H. M. and Lavan Z., Experimental 



Polynomial Calibrations for Hot Wires 235 

Investigation of Recirculating Cells in Laminar Coaxial Jets, A I A A  
J., 10(9), 1204-1210, 1972. 

9. Cheesewright, R., Proc. o f  the DISA Conference on Flow in 
Industrial and Medical Environment, David Cockrell, Eds., Univ. 
of Leicester Press, Leicester, England, April 1972. 

10. Wlezien, R. W., Bull. Am. Phys. Soc., 24, 1142, 1979. 
11. Beuther, P. B., Experimental Investigation of the Axisymmetric 

Turbulent Buoyant Plume, Ph.D. dissertation, SUNY at Buffalo, 
1980. 

12. Shabbir, A., An Experimental Study of an Axisymmetric Turbulent 

Buoyant Plume and Evaluation of Closure Hypotheses, Ph.D. 
dissertation, SUNY at Buffalo, 1987. 

13. Rao, V. K., and Brzustowski, T. A., Preliminary Hot-Wire Measure- 
ments in Free Convection Zones over Model Fires, Combust. Sci. 
Technol., 1, 171-180, 1969. 

14. Ahmad, M., An Experimental Study of an Axisymmetric Turbulent 
Buoyant Plume, M.S. thesis, SUNY at Buffalo, 1980. 

Received April 18, 1988; revised December 6, 1988 


