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Abstract

The consequences of a full similarity hypothesis for the outer turbulent bound-
ary layer with pressure gradient are explored. Included among them are an outer
scaling law for the velocity given by (U — Us)/Uc and the fact the § ~ 6, ~ 6.
Matching the outer flow to the near wall region yields power law velocity and fric-
tion laws, and determines the outer Reynolds stress scale to be given by u2. These
in turn yield the equilibrium condition for the outer flow as (6,/pul)dPo/dz =
A = constant, consistent with Clauser’s empirical choice.

1 INTRODUCTION

In his now classic paper “The turbulent boundary layer”, Clauser [1] sets forth in elegant
terms the theory of equilibrium turbulent boundary layers. Equilibrium boundary layers
satisfy the relation, (§/pu?)dPy/dz = constant where u, is the friction velocity and é
is a length scale identified only empirically as the displacement thickness, é.. Clauser
followed Millikan [2] in analyzing the boundary layer from the perspective of inner and
outer scaling laws, and extended the latter to include the pressure gradient parameter
identified above. Both inner and outer laws were based on scaling the velocity with
u,; that is, Ufu, = f(yu./v) and (U — Us)/u. = F (y/8) where § is an outer length
scale. Consequences of these choices were the familiar logarithmic velocity profile in the
matched layer, and the logarithmic friction law. Less well-known, but of considerable
importance in evaluating the correctness of the theory, were that 6./6 ~ u./Us and
0/6 ~ (u./Us) (1 + At./Us) where 8 is the momentum thickness and A is a constant.
A consequence of these relations was that the shape factor goes to unity in the limit of
infinite Reynolds number; i.e., H = 4,/6 — 1.

That the Millikan/Clauser results are problematical even for the zero pressure gradi-
ent boundary layer can be easily seen by approaching the limit as the distance along a
surface becomes large (i.e., as £ — 00). The unspecified outer length scale, § (which by
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definition must collapse the outer velocity profile) grows without bound relative to the
integral thicknesses, 8. and 0, even though the latter are determined entirely by the outer
profiles in the limit. Moreover, 8, and § must approach each other since the asymptotic
shape factor is unity. In other words, in outer variables there is no boundary layer at
all, a very strange boundary layer indeed! !

These problems are compounded for the equilibrium boundary layer as proposed
by Clauser since, in spite of a theory which argues that & is the appropriate length
scale, experimentally the velocity profiles are observed to collapse with the displacement
thickness, 8, — hence Clauser’s choice of 6 ~ ., the theory notwithstanding. On
the other hand, the success (disputed by some) of Clauser’s theory in accounting for
the experimental observations indicates that it might be almost correct, in spite of its
internal inconsistencies.

This paper represents an extension of the recent paper by George et al. [3] on the
zero pressure gradient boundary layer. The results of the new theory for boundary
layers with pressure gradient avoid the inconsistencies of the old, yet rescues many of
its attractive features. It can be shown (c.f. George et al. [3]) to have its own unique
advantages including power laws instead of logarithms with the result that the integral
equations are integrable and the x-dependences obtainable without resort to empirical
approximations.

2 The Outer Equations

The outer equations and boundary conditions appropriate to a turbulent boundary layer
at high Reynolds number are well-known to be given by

au au 1dP, 0
UE+VE/-—_;E_+.6_3/[—<UD>] (1)

where U — Uy and V — V, as y — oo.
Similarity solutions to equation 1 are sought for which

U-Usn = U,F(y/5) (2)
-0 = R.,ro(y/6) @)

where U,,, R,,, and § are functions only of x. The two important differences between
the present analysis and that of Clauser [1] are immediately apparent:

o The outer velocity scale has not been arbitrarily chosen (as u, or Uy) but remains
to be determined by the analysis itself.

o The outer Reynolds stress scale has not been arbitrarily chosen (to be u? or any
“velocity squared” form), but remains to be determined from the analysis.

1George et al. [3] provide a comprehensive review of the experimental data for the zero pressure
gradient boundary layer and the manner in which it has been manipulated incorrectly to support the
classical theory.



903

It is also possible to show from their definitions that the displacement and momentum
thicknesses are asymptotically proportional to the boundary layer thickness (i.e. 6, ~
6 ~ &, George et al. [3]) with an asymptotic shape factor greater than unity.

The free stream flow at the outer edge of the boundary layer and the V-component
of the mean velocity in the boundary layer are governed approximately by

dUs 1dPy
Voo dz —; dz ()

v (oU
=_ N

v=-[ (%) (%)

Substitution into equation 1 and clearing terms yields
§ dUs Ueo\ 6§ dU,, § dUs| .0 Uy db § dUso\ | _
[(U— dz ) + (U—) U, dz ]F+ [Um dz }F - [(U dz) + (U_ o )}yp

dé § dU ;Y R
_ ao s0 Ndi = S0 /

(@) ()]~ v =[] ®

It is clear that full similarity (or self-preservation in the sense of George [5]) is possible
only if

and

Upw ~ Us (M)
ds
2 _
Rso V%o (8)
ds § dUs, 6 dP,

~

dz pUs dz — pUZ dz

It is hypothesized that an equilibrium boundary flow in the outer layer will be gov-
erned by solutions satisfying the similarity equations above. Since only the free stream
velocity and pressure gradient are subject to external control, the boundary layer will
adjust itself accordingly. Specifically, the outer profiles of velocity and Reynolds stress
will be functions of

7=y/é (10)

and 5 dp 5 du
A = = =~ = constant (11)

= UZ(d6/dz) dz  Uw(dé/dz) dz
They may also be expected to exhibit a residual dependence on the local Reynolds
number of the flow given by

Usob
k=== (12)

Thus the velocity deficit law is given by

U — U = U F(T; €, A) (13)
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and the Reynolds stress in the outer layer is given by
— a5 = U2 (d6/dz)r.(F;e, A) (14)

Before proceeding further, it is worth noting that these conditions were recognized
long ago and abandoned in favor of local similarity theories; (e.g. von Karman [4]). The
first condition corresponds exactly to the scaling of the outer solution suggested by many
from heuristic arguments (c.f. George et al. [3]). Certainly it and the relation between
§ and 6. can not in and of themselves have been the problem since experimentalists have
been collapsing boundary layer profiles with Uy, and é, since the beginnings of turbulent
boundary layer measurements. It must then have been the condition on the Reynolds
stress, equation 7 which presented difficulty to the theoreticians. However, this would
have been so only if it were also required (as it was) that R,, = U2, for then it would
have also been necessary that d6/dz = constant. Since the boundary layer was well-
known not to grow linearly, von Karman (and many after him as well) was forced to
conclude that full self-preservation was not possible, and therefore had to settle for a
locally self-preserving solution.

George [5], however, has pointed out that there is no reason to insist that R,, = U2,
and further argued that this is seldom the case. If this arbitrary requirement is relaxed,
then there is no longer the requirement for linear growth, and full similarity of the outer
equations becomes tenable. In fact, the outer flow is governed by two velocity scales,
U, and a second governing the Reynolds stress satisfying the second condition. What
determines this second scale? Clearly it must be determined by the boundary conditions
on the Reynolds stress itself. Obviously the homogeneous condition at infinity is of no
use, so it must be the conditions on the inside of the boundary layer; namely, those at
the outer edge of the wall layer. This matching of inner and outer Reynolds stresses will
be carried out below.

3 Similarity of the Inner Equations

The equations for the near wall region of the boundary layer can be integrated to yield

2 U ydP,

ul = <uv>+uay > (15)
where u, is the friction velocity and U — 0 at y = 0. The presence of u. in equation 15
does not imply that the wall shear stress is an independent parameter (like v or Us);
rather, it is a dependent parameter which must be determined by matching solutions of
the inner and outer equations.

In keeping with the principle set forth above, similarity solutions to the inner equa-
tions are sought of the form

= Ua(z)f(y") (16)
Roi(z)ri(y*) 17)

|
g <
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where
+

y (18)

"
= e

and the length scale  remains to be determined.
Substitution into equation 15 and clearing terms yields to leading order

wil _[Ba], [ v | p_ |1 %P
53] =[Gl [l v e a9

The choice for 7 is now obviously

n=v/Us (20)

from which it follows immediately that similarity solutions are possible only if the inner
Reynolds stress scale is given by

R, = Uzi (21)
and
p%% = constant (22)

It is easy to show that full similarity of the inner equations is not possible for ar-
bitrary values of dPs/dz. If U, is chosen equal to u,, then equation 19 requires that
(vdPw /dz)/pu = constant which is inconsistent with equation 11 unless dP, Jdz = 0.
The other possible choice for the inner scale velocity is u, = (vdPe /dz/ p)'/® which has
the advantage that it satisfies identically equation 22. Unfortunately equation 21 then
requires that u, ~ u,, an unreasonable possibility when dPy/dz — 0. This is, however,
the only choice for boundary layers near separation where the wall shear stress becomes
vanishingly small, a subject addressed below.

For boundary layers not near separation, it is more convenient to define the inner
velocity scale to be the friction velocity which is the only choice for the constant pressure
(zero pressure-gradient) boundary layer. This choice will cause no loss of generality as
long as the pressure gradient is retained as one of the arguments in r;. It should be
noted that except for the two limiting cases of constant pressure and separation, there
is no possibility of a fully similar inner solution and only locally similar solutions can be

expected.
If the inner velocity scale is chosen to be
Uy =u. (23)
then it follows that
n = vfu (24)
Ry = ul (25)

These are of course the usual choices for the inner layer, and are the same as those
employed by George et al. [3]. The integrated inner equation can now be written (to
leading order in ¢) as

l=ri+f + Mt (26)
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where X is defined by

_ v dPy,
The appropriate scaling laws for the inner boundary layer are given by
U = uf(ytie,)) (28)
—w = ulr7e, ) (29)

Note that these representations are correct even near separation since the functions
depend on both ¢ and A. In fact, the necessity of eliminating the dependence on u, in
the limit as u. — 0 can be used to determine the asymptotic dependence of f and r;
on A. The results are f — MBS (y* A3 ) and r; — A2/3r, (yt A3 ¢) in the limit as
X — co. This means, of course, that u, is the appropriate scale velocity in the this limit,
as noted above.

Tt will be shown below that matching the inner and outer Reynolds stresses (to first
order) requires that R,, ~ Re ~ u2. Anticipating this, A can be expressed in terms of
the outer pressure parameter A as

A=¢A (30)
where A is defined as 5 dP.
= pul dz (31)

It is useful to rewrite equation 26 in mixed variables using equations 30 and 31 and

7 = eyt. The result is

l=ri+f +Ay (32)
Recall that ¥ is small in the inner layer (§ < 0.1 is a reasonable approximation to the
extent of the inner region). Thus if A is small enough so that AF << 1, then in this
limit, the last term of equation 26 vanishes, and the inner equation is independent of the
pressure gradient (to first order).

The reason for using U,; = u. instead of u, should now be clear since the inner equa-
tions reduce to those for zero pressure gradient for moderate values of A. On the other
hand, if A — oo (as near separation where u, — 0), then the last term of equation 26
increases without bound and the entire scaling with u, must be reconsidered. This case
will be considered separately below; however, it has already been noted that scaling with
u, is the appropriate choice in this limit.

4 The Velocity in the Matched Layer

The purpose of this section is to effect a matching of the Law of the Wall given by
equation 28 to the new Deficit Law set forth in equation 13. There are several ways
the matching can be accomplished, all of which yield asymptotically the same results.
The procedure utilized here is the same utilized by George et al. [3] which has the
advantage that it yields results which are valid at finite Reynolds number, unlike the
usual asymptotic matching which is strictly valid only at infinite Reynolds number.
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Because of the presence of different velocity scales in the inner and outer solutions, u.
and Uy, respectively, it is easier to match (dU/dy)/U than the velocity derivative alone,
as is usually done. By using the same procedures as George et al. [3] ? it can be shown
that

1+ F(7,6,A) = Co(e, A)7"N + Bo(e, A) (33)
f(ut,e,A) = Ci(e, )y + Bi(e, A) (34)
where it is required that
B, _ w (35)
B Ux

Thus the velocity profile in the matched layer is a power law with coefficients and expo-
nent which depend in principle on both Reynolds number, €' = u.6/v, and the pressure
gradient parameter A. (Note that A has been used to replace A in the outer profile.)
Since equations 33 and 34 must be asymptotically independent of Reynolds number, the
coeficients and exponent must be asymptotically dependent only on A; i.e.

7(e) = Yw(A)
B,(e,A) — 0
Bi(e,A) — Bix(A)
Co(e,A) — Coo(A)
C,'(EJ, A) — C;OO(A)

as & — 0. Note that the condition on B, follows from equation 35 and the fact u./U, — 0
in the limit.

Figures 1 — 4 were obtained by plotting the zero pressure gradient data of Purtell
and Klebanoff and Smith and Walker (v. ref [3] for details) as U versus y” and fitting
the best straight line. The preferred values must be consistent with B, — 0 so that the
recommended value of 4o, is 1/11. The corresponding asymptotic values for the other
functions are Bjo = 0, C, = 0.9, and C; = 12. In the absence of other criteria, vy =1 /11
could be used for all Reynolds numbers and the remaining values chosen from the graph
to be functions of the Reynolds number. However these choices are made, these zero
pressure gradient values are not appropriate for values of A > 5. Above this value, the
parameters retain a dependence on Lambda until the separation limit of v = 1 /2 is
reached.

5 The Friction Law

The requirement that the velocities themselves must match yields a friction law which
is valid both asymptotically and for finite Reynolds number. Substituting equations 33
and 34 into equations 28 and 13, and equating velocities yields

e (3

2Note that the additive constants B; and B, were mistakenly omitted in this earlier paper.
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It follows immediately that

- C, 114 U6 —v/(1+7)
7=(2) (T ) (37)

Thus the friction law is also given by a power law, a considerably more convenient form
than the implicit logarithmic relation of the old theory. Note that in principle, all of the
constants retain a dependence on both ¢ and A.

6 The Reynolds Stress in the Matched Layer

The Reynolds stress can be similarly matched to yield

ro(F;6,A) = Do(e,A)7(e,A) + Eo(e, A) (38)
riytie,A = Di(e,A)P(e,A) + Ei(e, A) (39)

where a solution is possible only if

D;
D—o =€ Eo (40)
and
Et' Raa
E B Rsi (41)
The Reynolds stress in the matched layer is given (to first order) by
u? u?
- = * * - 4
A [Rm] Ay #2)
This can be satisfied by equation 38 only if # =1 and
2
u
E, = = 4
Z. (43)
D,
- A (44)

In the infinite Reynolds number limit , D, and E, become Reynolds number independent
so that the similarity condition of equation 11 is indeed A = constant as stated earlier.
This is, of course, Clauser’s condition for equilibrium boundary layers as originally de-
rived. However, since 6./6 is also asymptotically constant (as demonstrated by George
et al. [3], there is no inconsistency between theory and experiment as with the Clauser [1]
theory. Equation 43 also makes it clear that the outer Reynolds stress scales with u? as
suggested earlier.

The functions for the inner form of the Reynolds stress in the matched layer can be
similarly determined using equations 26 and 39:

E =1 (45)
D.‘ = —eA (46)
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7 Summary and Conclusions

By invoking the principle that the outer boundary layer should be described by solutions
which were fully similar (as opposed to only locally similar) and by matching these solu-
tions to the wall layer, it has been possible to derive theoretically Clauser’s equilibrium
boundary layer condition. There are other implications of the theory which page restric-
tions prohibit discussing here. It was possible to show, however, that the velocity deficit
should scale with U, and that the matched layer profiles and friction law were described
by power laws. Other consequences of the theory will be presented in subsequent papers.
Included among them will be the relation between shape factor and A, discussion of the
behavior of a boundary layer near separation and a criterion for when separation occurs.

It is of interest to ask when such equilibrium boundary layers exist? From the per-
spective of this paper it is probably more important to ask when they do not, especially
in view of the abundant evidence that they do It is suggested that they will not only
when the time scale over which the external flow or wall conditions (like roughness)
change is small compared to the appropriate time scale of the turbulence. Even then
the flow will try to settle into a new equilibrium with A = constant, but a different one.
Some insight into how this adjustment may occur is provided by the momentum integral
equation, all of the terms of which are proportional to one another for equilibrium, but
readjust their relative values when the equilibrium is disturbed.
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