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A proper orthogonal decomposition is used to extract eigenvectors from two-point velocity
measurements in the mixing layer of a high Reynolds number axisymmetric jet. Cross-
spectra were measured over an 8z8x48x512 grid at one streamwise location, z/D = 3.
Application of the proper orthogonal decomposition in the radial direction yields the
lowest order eigenfunction which contains 40 percent of the turbulent kinetic energy
and typically 85 percent of the various Reynolds stresses in the jet mixing layer. It
was possible to almost completely reconstruct instantaneous signals of the streamwise
and radial velocity components in the jet mixing layer from these proper orthogonal
eigenfunctions using only the first few modes.

Further decomposition in the azimuthal direction, utilizing the harmonic decomposi-
tion, reveals the existence of a coherent ring-like structure dominated by the axisymmet-
ric mode near the potential core, but with the fourth, fifth and sixth azimuthal modes
playing a significant role from the center of the mixing layer and outward toward the
low-speed side of the mixing layer. The Reynolds stress azimuthal correlations and their
breakdown into azimuthal modes show that the incoherent turbulence is concentrated
in the center of the coherent structure, indicating that it has either been generated or
advected there.

From the results of the proper orthogonal decomposition and the azimuthal harmonic
decomposition a life cycle is proposed for the evolution of coherent structures in the jet
mixing layer. This life cycle begins with inception of rings of concentrated vorticity from
an instability of the mean flow. A mutual interaction then occurs between two different
rings, analogous to the first stages of the leapfrogging type phenomenon. A vortex
instability arises from the further interaction of these two rings which finally results in a
cascade of energy to smaller scales by vortex breakup and stretching.
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1. INTRODUCTION

1.1. Historical Review

The large scale features of turbulent flows are obvious to even the most casual observer of
nature. In spite of this, however, the effort to quantify these coherent and clearly visible
aspects of turbulent motions has proven to be a considerable challenge to the scientific
community. In no flow has the evidence for the existence of coherent structures been
more tantalizing than the axisymmetric jet mixing layer, nor is there any flow where
they are potentially more important to an understanding of its dynamics. Yet even in
this flow, the coherent structures can not be unambiguously identified, much less their
dynamics understood.

The first efforts to systematically study the large scale eddies of turbulent shear flows
were carried out by Townsend and his students who postulated them to explain the
slow roll-off of measured velocity correlations at large time and space separations (v.
Townsend 1956, Grant 1958). The large eddies were assumed to be responsible for the
finite correlation at lags bigger than the integral scale and to account for 10-20 percent
of the total energy. They were also believed to be responsible for intermittency and
entrainment, both prominent features of most external turbulent shear flows. However,
they were not believed to be very involved (at least directly) in the energetics of the flow,
and thus were viewed as rather passive contributors to the dynamics of the turbulence.

In the early 1970’s the concept of coherent structures was introduced (v. Kovasznay
et al 1970, Crow and Champagne 1971, Brown and Roshko 1974). These coherent struc-
tures were believed to be very active phenomena. They were clearly visible with flow
visualization (at least at low Reynolds numbers) where they were seen to pair and ex-
plode (v. Hussain and Clark 1981). Like Townsend’s (1956) big eddies these coherent
structures were also believed responsible for entrainment and mixing. The response of
the turbulence community to these observations was immediate and enthusiastic. It was
suggested that turbulence could not be modeled, much less understood, without explic-
itly accounting for the existence of coherent structures ( Liepmann 1979). Averaging, at
least of the conventional form, was considered outdated since it smeared out such events
and in this view only conditional averaging could account for the existence of such events
( Cantwell 1981). The conditional averaging approach has been used extensively over
the past two decades (v. Hussain 1986 for a comprehensive review).

Where has this conditional sampling approach taken us? We have seen many coherent
structures but we still do not have a very good idea as to why they arise nor do we
understand their dynamics. In part this failure can be traced to the conditional sampling
approach which while finding structures which resemble those we see, gives no information
as to their dynamical role nor insight into how to write equations for them. Adrian, Moin
and Moser (1987) have shown that these classical conditional averages yield little that
is not available from the two point correlation tensor. They argue that if a structure,
no matter how intermittent, contributes a majority of the total integrated energy or
Reynolds stress, then it will dominate the two-point correlation statistics and therefore
information about the structure will be retained in the correlation tensor. In fact, they
show that linear stochastic estimates of quadrant II-type events calculated from the
two-point correlation tensor agree quite well with the actual conditional averages.

In an attempt to provide an objective basis for finding the large eddies from large sepa-
ration correlation measurements, Lumley (1967) proposed that a large eddy be identified
by correlating its velocity with an ensemble of realizations of the flow field. Choosing the
large eddy so that the mean square energy is maximized leads to a well-defined integral
eigenvalue problem which has as its kernel the velocity cross-correlation tensor. Because
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this velocity tensor is symmetric the solutions to the integral eigenvalue problem are
governed by the Hilbert-Schmidt theory (Lumley 1967). Lumley further proposed that
the large eddy be identified as the least order eigenfunction from the proper orthogo-
nal decomposition. It is interesting to note that by deciding at the beginning that the
coherent structure should optimally represent the field in the mean square sense, the
functions have been determined. As pointed out by George (1988) and Moser (1988),
it actually matters not whether the field represents velocity (as in this case), vorticity,
pressure, or temperature, the integral eigenvalue problem will simply have as its kernel
the appropriate correlation tensor. Thus all of the subjectivity has been lumped into this
projection and the choice of principle behind it. (George 1988 also notes that it might
be interesting to explore the consequences of alternative choices for maximization and
Moser 1988 develops these ideas using the vorticity field.)

Because the eigenfunctions arising from the proper orthogonal decomposition are or-
thogonal and form a complete set, Lumley noted that these solutions allow a represen-
tation of any one of the original realizations in terms of the orthogonal eigenfunctions
extracted from the eigenvalue problem. It also allows for objective determination of
the contributions of the individual orthogonal eigenmodes to the kinetic energies and
Reynolds stresses. Thus, if one agrees to work with Lumley’s definition then one can
write equations to study the dynamics of these structures as suggested by Lumley (1967).
For a review of recent work which utilizes the POD in this manner see Berkooz et al
(1993).

Until very recently, only a small number of researchers have applied the proper or-
thogonal decomposition to various flows. Payne (1966) examined the wake of a circular
cylinder utilizing the correlation measurements of Grant (1958). Because only the trace
of the tensor was measured by Grant, a mixing length assumption was used in conjunc-
tion with the continuity equation to obtain the remaining terms in the correlation tensor.
Bakewell and Lumley (1967) examined the near wall region of a turbulent pipe flow. In
a recent review, George (1988) discusses the severe limitations of the early efforts, and
points out that it is only with the recent experiments of Herzog (1986) in the turbu-
lent pipe flow, earlier versions of the work reported here (Leib et al 1984, Glauser et al
1985,1987 and Glauser and George 1987a,b), and the numerical studies of Moin (1984),
that the potential of the proper orthogonal decomposition is beginning to be realized.

Since the work described above, there has been a flurry of activity using proper or-
thogonal decomposition techniques, in part driven by interest in chaos and its relation to
turbulence. Aubry et al (1988) utilized the eigenfunctions of Herzog (1986) as a good set
of basis functions in a dynamical systems approach to the near wall region. Their results
are not inconsistent with events such as bursting seen in experimental work. Deane et al
(1991) developed POD based models for grooved channels and circular cylinders. They
investigated the ability of these models to mimic full simulations for Reynolds numbers
greater than from which the eigenfunctions were obtained. For the grooved channel they
found that the models extrapolated quite well for several Reynolds numbers. For the
cylinder wake, however, the models were found to be only valid in a Reynolds number
region close to where the eigenfunctions were obtained. Glauser et al (1991, 1992) and
Zheng (1991) have used the eigenfunctions described in this paper to develop a similar
type of dynamical systems model for the jet mixing layer. They find clear evidence of
pairs of vortices interacting in the streamwise direction resulting in a transfer of az-
imuthal to streamwise vorticity. Rajaee et al (1994) use the snapshot form of the POD
to develop a low-dimensional model for a weakly perturbed free shear layer. They find
that their simulations compare well with the direct projections of the snapshots on the
eigenfunctions. Chambers et al (1988) and Sirovich and Rodriquez (1987) have suc-
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cessively applied this approach to Burgers equation and the Ginsburg-Landau equation
respectively. Although these two applications are not in turbulent flows, both of the
equations exhibit chaotic dynamics. A recent Cambridge monograph by Holmes, Lumley
and Berkooz (Holmes et al. 1996) provides a nice overview on how such systems can be
developed.

Moin (1984) and Moin and Moser (1989) utilized channel flow simulations to provide
the two-point correlation tensor. They found the dominant eddy contributes as much
as 76 percent to the turbulent kinetic energy. Sirovich et al (1987) used this approach
to study turbulent Bernard convection. They found that the first 5 eigenvalues account
for over 60 percent of the energy. Glezer et al (1989) applied an extended version of
the POD to a time periodically forced mixing layer. Delville et al (1991) applied the
proper orthogonal decomposition to a plane fully turbulent mixing layer. They found
that 70 percent of the mean square streamwise velocity was contained in the first 3 modes.
Ukeiley et al (1992) examined the multifractal character of the POD reconstructions of
the instantaneous streamwise velocity fields in a lobed mixer flow. They found that the
higher POD mode contributions to the fluctuating velocity field were more multifractal
in character, indicative of smaller scales. Application of the POD to the axisymmetric
mixing layer to study the large scale structure dynamics was performed by Citriniti and
George (1997) (herein referred to as IT). They showed structure dynamics in the layer
and suggested a life cycle for the structure evolution. For a more comprehensive review
of POD applications see Berkooz et al (1993).

The earliest investigations of the statistical characteristics of the jet shear layer were
carried out by Laurence (1956), Davies et al (1963), Bradshaw et al (1964) and Crow
and Champagne (1971). Subsequent to these studies were numerous attempts to study
the coherent structures by conditional sampling techniques. Cantwell (1981), Hussain
(1983,1986), Ho and Huerre (1984) and Liu (1989) provide extensive reviews of these
and other efforts which confirmed the probable existence of coherent structures and gave
some hint as to their character. The azimuthal velocity correlations and their subse-
quent breakdown versus azimuthal Fourier modes were studied by Sreenivasan (1984)
and Hussain and Zaman (1980). Sreenivasan examined temperature and streamwise ve-
locity azimuthal correlations for several radial and streamwise locations, and suggested
that azimuthal mode number 6 may be important. Hussain and Zaman measured the
azimuthal correlations of the fluctuating streamwise velocity for excited and unexcited
jets at 3 streamwise locations in the near field shear layer and 3 radial locations. They
noticed a stronger azimuthal correlation for the excited jet. Glauser and George (1987b)
presented the first measurements of Reynolds stress azimuthal correlations and their
subsequent breakdown versus azimuthal Fourier modes. Their results are qualitatively
consistent with the afore-mentioned results and will be discussed in more detail in the
Results section of this paper. Corke et al (1991) utilize higher order spectra to study
mode selection and resonant phase locking in unstable axisymmetric jets. They show
the importance of various helical modes in the jet mixing layer, consistent with what
is observed in the work reported here. Long and Arndt (1985), Long et al (1993) and
Long, Arndt and Glauser (1997) report the application of the POD to the pressure field
in the jet mixing layer. They perform the POD in the streamwise direction for several
azimuthal modes. They find that the eigenfunctions exhibit streamwise structure similar
to wave packets.

All of these experiments (except those of Glauser and George 1987b), contained much
less information about the two-point velocity correlation tensor than is needed to solve
the integral eigenvalue problem proposed by Lumley. Hence the goal of the our work has
been to acquire the necessary data to apply the proper orthogonal decomposition to the
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near field jet mixing layer, and to carry out and evaluate the decomposition as a means
to identifying the role of coherent structures. The axisymmetric jet mixing layer study
reported herein has been in progress for more than a decade, and is an outgrowth of an
effort initiated in 1972 to understand the role of coherent structures in noise generation
(v. Arndt and George 1974). The early experimental results (Khwaja 1981) established
that the low wavenumber cross-spectra and correlations at large lags could be regarded as
nearly self-preserving so that attention could be focused on a single streamwise location.
Leib et al (1984) reported the first application of the proper orthogonal decomposition
to the jet mixing layer, and confirmed the expected rapid convergence with only three
eigenfunctions required to capture 95 percent of the streamwise velocity spectra. Subse-
quent studies reported by Glauser et al (1985,1987) demonstrated (for the first time) the
ability of the proper orthogonal decomposition to reconstruct the details of the instanta-
neous signals. Additional measurements of the azimuthal variation of the eigenfunctions
and multiple components of velocity were discussed by Glauser and George (1987a,b).

The information gained in these earlier studies was used to design the present experi-
ment. The new results allow two separate applications of the POD to be performed: the
first, an application of the proper orthogonal decomposition to a cross-section of the flow
at a single streamwise location of the mixing layer; and the second, a complete three-
dimensional space application of the POD at an instant in time. These applications will
be described in detail below, following a review of the theory and a description of the
experiment.

2. The Proper Orthogonal Decomposition

Following Lumley (1967), a deterministic structure, ¢;(Z,t), is sought which has the
largest mean square projection on the random velocity field, w;(#,t). Maximizing the
mean square projection via the calculus of variations leads to the integral eigenvalue
problem

Ao (% /R,] (Z,& ,t,t )qu](x t)dZ dt . (2.1)

The symmetric kernel of this Fredholm integral equation is the two—point correlation
tenser R;; defined by
Rij(fafat7t)Zui(fat)uj(fl:tIL (22)

where Z and 7 represent different spatial points and ¢ and t different times and the
overbar denotes the appropriate average for the problem under consideration (see Section
3 for a discussion on how averaging was performed in the jet).

From the Hilbert—-Schmidt theory it can be shown that the solution of the Fredholm
integral equation shown in equation 2.1 for a symmetric kernel with finite total energy
(i-e. statistically inhomogeneous and non-stationary), is a discrete set (v. Lumley 1970);
hence equation 2.1 becomes

A" (F / Rij(Z,% ,t,t )¢7(& ,t )di dt . (2.3)
The eigenfunctions of the Fredholm equation are orthogonal over the interval and

/¢" )P (Z, t)dEdt = dpm (2.4)

for normalized eigenfunctions. The eigenvalues of the Fredholm equation with a real
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symmetric kernel are all real and uncorrelated, i.e.

a™a™ = A" 6nm (2.5)
so that the fluctuating random field can be reconstructed from the eigenfunctions by
N=o0
@(Tt) = Y a"$}(F,1). (2.6)
n=0

The random coefficients can be calculated from
= / @43, 8) 67 (7, 1) dF, dt (2.7)

where the ¢} are the eigenfunctions obtained from equation 2.3. Using these, the two-
point velocity correlation can be reconstructed as

oo
Rij(#,7 ,t,t) = Y A"¢r(Z,t)¢;"(% 1) (2.8)
n=0
Thus, each eigenfunction makes an independent contribution to the kinetic energy,
Reynolds stress and spectra. It follows from this and the orthogonality of the eigen-
functions that the total turbulent kinetic energy in the flow is given by the sum of the
eigenvalues, \".

In summary then, the basic idea behind the proper orthogonal decomposition is that
one tries to optimally represent a random field by a set of deterministic functions which
in turn are determined by the field itself. This is quite unlike the more common situa-
tion where one chooses a set of orthogonal functions (like the harmonic ones of Fourier
analysis) and then seeks the coefficients necessary to represent the field. For the proper
orthogonal decomposition, both the functions and the coefficients arise from the statis-
tical properties of the random field itself. For more details on the proper orthogonal
decomposition see Berkooz et al (1993), Lumley (1967, 1970), George (1988), and Moin
and Moser (1989).

2.1. Harmonic Decomposition

If the random field is statistically homogeneous or periodic in one or more directions or
stationary in time, the eigenfunctions become Fourier modes (Lumley 1967, 1970, George
1988), so that the proper orthogonal decomposition reduces to the harmonic decompo-
sition in these directions. In the jet mixing layer to be studied here, the flow is periodic
in the azimuthal direction and stationary in time. Since the eigenfunctions are known in
these coordinates, it is convenient to first decompose the field into the appropriate Fourier
modes, then apply the proper orthogonal decomposition to the Fourier coefficients. This
procedure is described in detail in George (1988). First suggested by Lumley (1967),
this is simply a consequence of the factorization of the eigenfunctions. The quantity of
interest is then the cross-spectral tensor given by

0o 27
Bij(l',l'l;T’, Tl;maf) = QL / / R,-j(m,:c';r, r';ﬁ’ T)eii(27rf7—+mﬂ)d7'd19 (29)
TJ-xJo

where f is the frequency (corresponding to the time lag 7 = t' — ¢) and m is azimuthal
mode number (corresponding to the angular separation variable 9 = 6 — ). Note that f
is a continuous variable as a consequence of the stationarity, while m = +1, +2, - - - since
the flow is homogeneous and periodic in 6.
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The eigenvalue problem corresponding to equation 2.3 can now be written in cylindrical
coordinates for a fixed value of z = 2’ =T as

An(ma f)¢7(fa r,m, f) = LBZJ (Ea Ea T, ,rl7m7 f)(ﬁ;b(j: TIJ m, f)rld,rl' (210)

where r and r’ represent, different spatial locations in the radial direction (i.e. the inho-
mogeneous direction). The domain over which the integration in equation 2.10 is to be
performed is the shear layer which is presumed of finite total energy. Note that T is not a
variable, but a fixed location, so that the decomposition is only a partial decomposition
over three of the four variables. Note also that the eigenvalues and eigenfunctions are
now a function of azimuthal mode number m and frequency f.

2.2. The Decomposition in the Streamwise Direction

In the results presented here the flow is assumed homogeneous in the streamwise direction
so that it is possible to extract the streamwise variation and the unmeasured components
of the correlation tensor upon application of the continuity equation as discussed in the
next section. It should be noted, however, that this does not compromise the quality of
the original measurements at z/d = 3 since they were obtained in the growing jet shear
layer.

The wavenumber spectra are determined from the measurements of the frequency
spectra using Taylor’s hypothesis since the data was taken at a single streamwise location.
However, when this is done (as will be the case below), it will not be possible to separately
account for the temporal and streamwise spatial variation of the eigenfunctions. Thus,
either the eigenvalue problem can be solved including time for a fixed value of z (as
described in the previous section and in (II)), or the entire spatial variation can be
obtained for a fixed value of time. Both these possibilities will be examined in the
analysis of the data which follows.

The frequency dependence of the cross-spectra can be mapped into a wavenumber
dependence resulting in

Bij(r,r'; fym) = Ay (r,r's k1, m) (2.11)
where
2
ky = %f (2.12)

The convection velocity U, was chosen to be constant across the layer at a value equal to
0.6U,. This is consistent with both the results of Zaman and Hussain (1981) who showed
that a single convection velocity across the layer gave the best results for the large scale
motions and with (IT) where the structures were shown to be convected at this speed.

Thus by using Taylor’s hypothesis in conjunction with the assumption of statistical
homogeneity in z, the full spatial variation of the cross-spectral tensor can be obtained.
This, together with the knowledge of the eigenfunctions in the azimuthal direction allows
the two-point cross correlation to be reconstructed as

Rij(psr,r's0) =) / 1 otmd) A (v oy ym) by, (2.13)

where A;; is the kernel for inhomogeneous eigenvalue problem. Note now that A;; is a
function of k; and not f so that the eigenvalue problem solved becomes

/\"(m,kl)qb?(r,m,kl):/Aij(r,r',m,k‘l)(ﬁ;‘(r',m,kl)r'dr'. (2.14)
R
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This decomposition can be contrasted with the time - dependent decomposition of equa-
tion 2.10. Both will be employed in analyzing the experimental data.

2.3. Consequences of the Continuity Equation

In the experiments reported below, only four of the nine components of the two-point
cross-spectral tensor were determined. The remaining components are obtained from the
appropriate symmetries and by application of the continuity equation. The continuity
equation can be written in terms of R;; as

(9R,'j
aiL'i

The correlation tensor can be represented as the Fourier inverse transform of A;; as
shown in equation 2.13 so that the continuity equation in cylindrical coordinates becomes

=0. (2.15)

. 6142 m
kl'LAlj + 87‘J + Azj/T’ — EAgj =0. (2.16)
This can be solved for Az; to obtain
&) . 8A2 .
Agj = E[kl”&Alj + 7’7 + AQJ'/T],J = 1,2,3 (217)

where Ay;, Ay for j = 1,2 are given from the experimental measurements. Equation
2.17 was solved numerically and the values of A;; used in equation 2.14 to solve for the
eigenvalues and eigenfunctions.

2.4. Azimuthal symmetries in R;; and Ay;

The jet shear layer is symmetric in the azimuthal direction. Hence R;;(¥) = R;;(—9)
when 7 # 3 and j # 3 or when ¢ = j = 3. For the remaining combinations, i,j = 1,3;
2,3; 3,2 and 3,1, R;;(0) = —R;j(—6). The fact that these remaining combinations are
odd can easily be shown from the continuity equation, written in terms of R;;. Because
R;; has these symmetries and is real-valued, A;;, is an even function of m for 4, j = 1,1;
1,2; 2,1; 2,2 and 3,3. For the other combinations, ¢,j = 2,3;3,2;1,3 and 3,1, A4;; is
an odd function of m. These symmetries were utilized to reduce by a factor - of - two
the amount of data taken in the azimuthal direction, i.e., measurements where made
from 0 to 7 only. Moin and Moser (1989) utilized similar symmetries for the spanwise
direction in a channel flow simulation to reduce by a factor-of-two the computations
required. Herzog (1986) utilized these symmetries in a pipe flow to find the structure of
the solutions of the eigenvalue problem in wavenumber space.

3. Experiment
3.1. An Overview of the Experimental Approach

The axisymmetric jet mixing layer is a relatively simple flow to generate (based on
previous experience) and the limitations of the stationary hot wires are well-known in
this environment. (v. Beuther et al 1987). However, obtaining sufficient information on
the two-point cross-spectral tensor to apply the proper orthogonal decomposition in the
jet mixing layer (or any flow for that matter) is an ambitious and difficult task. Because
of this an approach was devised that consisted of doing the experiment in several phases.
This allowed for the opportunity to develop and test the experimental techniques, and
to utilize the insight gained in each step to improve the experiment. Of particular
importance were the effects of grid density, sampling rate, spectral convergence, and
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time record length which had to be ascertained from the first few phases before the final
experiment was performed.

The first phase was described in detail by Glauser et al (1985, 1987) and involved
using a rake of seven single wire hot-wire probes radially spanning the jet mixing layer at
x/D=3. This arrangement yielded instantaneous streamwise velocity data as a function
of radius in the jet mixing layer. From this data the streamwise cross-spectral tensor
was computed and the integral eigenvalue problem solved using it. The second phase
was performed to resolve questions about the spatial resolution in the first experiment.
It involved using a rake of 13 single wire hot-wire probes across the same span as in
the previous phase. Again this arrangement gave instantaneous streamwise velocity data
as a function of radius in the jet mixing layer, only now at 13 positions. The third
phase was described in detail by Glauser and George (1987a) and involved adding the
azimuthal variation to the problem in phase 1, again using single wires to measure only
the streamwise velocity fluctuations. The azimuthal correlations were realized in the
following manner: one rake of seven hot-wire probes (same as in the first phase) was
fixed at an arbitrarily chosen azimuthal position (since the flow was axisymmetric) while
another rake of 7 hot-wire probes was moved azimuthally. In all, 16 azimuthal positions
were measured over a span of 180 degrees.

The fourth phase is described in detail here, and involved measuring in addition to the
streamwise velocity, the radial velocity component. In effect, the first and third phases
were essentially repeated, only now including the radial velocity. This final phase utilized
two rakes of probes with 4 cross-wires on each rake so that cross-spectral combinations
from eight different radial stations were possible. In addition, the rakes were rotated
relative to each other so that 25 azimuthal positions were measured over a span of 180
degrees. From this data A;;(r,r', k1, m) has been calculated and the integral eigenvalue
problem solved. The results are compared to those in the previous investigations, and
are used to infer the character of the coherent structures in the jet mixing layer.

3.2. The Facility

The blower-driven facility for producing an isothermal, incompressible, axisymmetric air
jet is shown schematically in Figure 1. The jet nozzle was of fifth-order polynomial design
with a length-to-diameter ratio of unity, and follows a straight section containing both
honeycomb and screens. The exit diameter of the contraction is 0.098m, corresponding
to a contraction ratio of 10:1. The exit velocity could be varied continuously from 0.5
m/s to 40 m/s by using an inverter.

For the experiments reported herein, the exit velocity was 20 m/sec, corresponding to a
Reynolds number based on exit diameter of 110,000. At these conditions, the boundary
layer at the exit was turbulent with an approximate thickness of 0.0012 m (based on
U = 0.99U,), the mean velocity profile was flat to within 0.1 percent, and the turbulence
intensity at the exit plane was 0.35 percent. The spectrum of the fluctuating velocity at
the exit plane was smooth, and contained no spurious peaks. More details on the facility
are included in Glauser (1987).

3.3. Instrumentation and Calibration

Fluctuating velocities were measured using hot-wire probes grouped together on 2 rakes
with 4 cross-wires on each rake (v. Glauser 1987). The spacing between the individual
probes was 0.43 inches, covering a span from r/D = 0.13 to /D = 0.90 (both rakes were
combined to span the entire radial measurement domain). Each sensor was 5 microns in
diameter and had a sensing length of 1.2 mm giving a length-to-diameter ratio of 220.
The wires, 3 mm in length, were made of tungsten with copper plating utilized on the
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inactive length that was soldered to the prongs. Each probe formed one arm of either a
Dantec (DISA) 55M10 or 56C16 CTA standard bridge used in conjunction with a Dantec
55M01 or 56C01 Main Unit respectively. The individual bridges were each set to give a
wire overheat ratio of 0.8. Either 5m or 20m long cables were incorporated in the probe
arm of the particular bridge. The response of each system (including probes, prongs,
printed circuit boards, card edge connector and cables) to a square wave test was tuned
so that there was less than 10 percent overshoot. This allowed for stable operation over
the bandwidth of interest (DC — 6kHz).

The bridge top voltage of each anemometer was connected to a 8-pole Bessel low
pass anti-aliasing filter. The filters were phase-matched to within one degree. Each of
the filtered anemometer signals was digitized using a 16 channel, 150 KHz maximum
aggregate sampling rate, 15 bit, simultaneous sample and hold Phoenix A/D converter
unit which was interfaced to a DEC PDP11/84 minicomputer. A DEC RA81 500 M byte
disk drive and a DEC TUS81 high speed tape drive were used for storage of the data.

The hot wires were calibrated in the same facility in which the experiments were
performed. The velocity calibration range covered the entire range encountered in the
experiment, and was typically 1 m/s - 25 m/s. A digital linearizing scheme detailed by
George et al (1987) in which the velocity is expressed as the sum of powers of the voltages
was implemented. A modified cosine law (Champagne and Sleicher 1967) was utilized to
extract the radial and streamwise velocity components from the cross-wire data. Glauser
(1987) contains more details on the calibration scheme and the instrumentation.

3.4. Spectral Analysis Technique

The time direction in the jet being studied is stationary so that the proper orthogonal
decomposition reduces to the harmonic decomposition in this case. It is therefore usually
more convenient to directly form the Fourier transform of the incoming data (via FFT)
and compute the space- frequency cross-spectrum than to work with the space-time cross
correlation.

The spectra and cross spectra (between different components of velocity and spatially
separated velocity components) were computed using the following equation (v. Tan-
atichat and George 1985)

A Al
u;a*

T] = Sij(fa T, Tlaﬂaf) (31)

where 7 and j denote vector components, S;; is the cross spectral tensor (S;; is the Fourier
transform in time of R;; not yet transformed over ¥ as described by equation 2.9) T is
the record length and the overbar denotes an ensemble average. The prime emphasizes
that the transformed signals can come from different spatial points.

These spectra and cross-spectra must be ensemble-averaged to reduce the variabil-
ity. The constraints on minimum record length can be considerably more severe for
cross-spectra than that for the spectrum because of phase differences introduced by the
convection of disturbances between points. Hence, a significantly longer record may be
required for cross-spectra than for spectra (v. Tan-atichat and George 1985). Since the
experiments in the jet were performed at one streamwise location (/D = 3) the phase
differences across the shear layer and in the azimuthal direction are small, and it was
possible to use a single record length for all separations. In brief, the process was as
follows:

(a) Compute 4; and ﬂlj using a FFT.

(b) Multiply 4; times the complex conjugate of 11; and divide by T to get the spectral
or cross-spectral estimate.
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(¢) Ensemble average over many independent spectral estimates as suggested by equa-
tion 3.1 to obtain S;;. This was accomplished by block averaging (typically 300 blocks).
The rate of convergence of our spectral estimate is the same as for any ensemble average,
ie. € ~ 1/N'/2 where N is the number of independent spectral estimates and e is the
variability of the spectral estimator (George 1978). A 20 percent bandwidth digital
smoothing filter was then utilized to reduce the fluctuations even further. This filter did
not affect the phase over the frequency band of interest in this experiment (v. Oppenheim
et al 1983).

Each channel was low pass filtered at 800 Hz and sampled at a rate of 2 kHz. This
allowed us to resolve approximately one decade into the —5/3 range of the spectrum.
The number of samples taken per data block or record was 1024. It was determined from
initial work using much longer records that a one-half second record length (a bandwidth
of 2 Hz) was adequate. The time integral scale in this flow is approximately equal to
0.0013 sec. so that the number of integral scales per time record was large (typically
greater than 50), thus insuring negligible window effect on the spectral measurements
(v. Tan-atichat and George 1985, Glauser and George 1992).

3.5. Effect of the Measurement Grid in ¢

The correlations in the azimuthal direction are periodic so that Fourier modes were used
in this direction. This involved fitting a Fourier series in the azimuthal direction to the
cross-spectra S;;(Z,r,r', ¥, f). A major concern with this procedure was the aliasing of
the higher modes into the lower by virtue of the fact that it was not possible to satisfy
a Nyquist criterion in space due to the size of the probes and the number that would
have been required, nor were the results spatially filtered. Glauser and George (1992)
discuss in detail the problem of spatial aliasing in this flow. They conclude that the lack
of spatial resolution in % can introduce aliasing into the modal decomposition which can
seriously degrade the results at even the lowest mode numbers. They demonstrate that
the presence and amount of spatial aliasing can be estimated from a Nyquist diagram
and a knowledge of the turbulence (in this case the m~5/3 range) and conclude that the
effect of the spatial aliasing on mode numbers of 10 or less is negligible for the present
experiment.

3.6. The Effect of the Measurement Grid in r.

In view of the preceding discussion of spatial aliasing on the decomposition into azimuthal
Fourier modes, it is reasonable to suspect that the measurement grid in the radial di-
rection might also be important. The maximum number of POD eigenfunctions which
can be calculated from the decomposition is limited by the number of radial positions at
which the measurements have been taken. A sampling theorem was proven by Glauser
and George (1992) which states that if M eigenfunctions are required to represent the
field, then at least M measurement locations are required.

Lumley (1970) showed that the number of eigenfunctions required to represent the
integrated energy in the inhomogeneous direction was proportional to L/l where L is the
lateral extent of the flow and [ is the integral scale in that direction. For the axisymmetric
jet mixing layer, L ~ 0.2 - 0.25x while [ =~ 0.07 - 0.1z, so that by Lumley’s criterion three
eigenfunctions should be sufficient for this experiment. This number was confirmed by
Glauser and George (1992) who present a comparison between two different experiments,
one with 7 wires (grid points) across the radial span and the other with 13. They find very
little difference between the POD results in both cases with the first 3 modes containing
85 % of the kinetic energy, confirming Lumley’s afore mentioned criterion.

What resolution is required or where the measurements should be taken must be estab-
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lished empirically at present although Glauser and George (1992) suggest a theoretical
framework for making these decisions. In particular they argue that the kernel must be
represented well enough to integrate it. This criterion was shown to be satisfied in this
experiment by comparing the 7 and 13 wire results. In all of the measurements reported
below, an eight point grid was used in the radial direction, thus exceeding the minimum
number suggested.

3.7. Application of the Continuity Equation

Because of the assumptions of Taylor’s hypothesis, homogeneity in z and a constant
convection velocity for mapping f to kp, it is desirable to validate the application of the
continuity equation which is used to obtain the remaining terms in the correlation tensor.
A simple check is to compare the azimuthal velocity moments, extracted from application
of the continuity equation, to the direct measurements of the azimuthal velocity moments
obtained by Hussain and Clark (1981). The mean square azimuthal velocity at a given
radial position can be obtained from equation 2.13 by letting i = j = 3, setting r = r’,
p = ¥ = 0 and summing As3(r,7',m, ki) over m and integrating over k;. The mean
square azimuthal velocity moments calculated this way are found to be within 5 percent
of the measurements of Hussain and Clark (1981). For more details on the application
of the continuity equation to this data base see Zheng (1991).

4. Analysis of the Flow Field
4.1. Instantaneous Velocities, Velocity Moments and Spectra

At the high Reynolds numbers of the flow studied here (Rep ~ 10°) flow visualization ex-
periments show little evidence of the well organized structures present at lower Reynolds
numbers. The reason for this is not that they are not present (as is evident from the
conditional sampling experiments of Hussain and co-workers 1986), but that the flow is
considerably more complex. This is due to the increased number of Fourier modes which
arise from the enriched environment for non-linear interaction (from the advection terms
of the Navier Stokes equations) at high Reynolds number. Arndt and George (1974) have
shown how an increasing number of Fourier modes in stationary or homogeneous fields
limits the visibility of organized structures (see also George 1988).

One can appreciate the complexity of this flow by examining Figure 2 where one block
of instantaneous streamwise and radial velocities for eight radial locations are shown
plotted as a function of time. The marked difference in the amplitude and frequency
content of the signals is clear. The increasing intermittency toward the outer edges and
the lack of any easily identifiable organized events are evidence that a statistical approach
to turbulence, and to the search for coherent structures, is needed.

Figures 3 - 5 show, as a function of radius at /D = 3, measurements of the mean
velocity, U, and the streamwise and cross-stream rms velocity fluctuations,u’, v', all
normalized by U,, compared to the results of Hussain and Clark (1981). They used the
local momentum thickness defined as

> U U
Om /0 (Ue )1 i )dr (4.1)
to check for similarity in the jet shear layer. (Note that while the equations of motion do
not admit to fully self-preserving solutions, the results of Hussain and Clark 1981 clearly
show that the flow has organized itself so that it is nearly self-preserving, consistent with
the conjecture of George 1989 and the observations of Khwaja 1981). The value of 6,,
in our experiment at /D = 3 was found to be 1.37 cm, corresponding to 8,, /x = 0.046.
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From these figures it can be seen that the various quantities compare quite well with
those of Hussain and Clark (1981).

Spectra of the streamwise and radial velocity fluctuations for eight radial positions in
the jet shear layer (r/D = 0.13 —r/D = 0.9) at /D = 3 are shown plotted in Figures
6 and 7. All of the spectra around the center of the mixing layer and on the low speed
side of the shear layer have at least one full decade of a k~5/3 range.

In and near the potential core (r/D = 0.13,7/D = 0.24, r/D = 0.35) all of the spectra
have a maximum away from the origin. As one progresses away from the potential core
toward the center of the mixing layer (r/D = 0.46) the radial velocity spectrum still
exhibits this maximum away from the origin. The streamwise spectrum, however, now
has its maximum at the origin. This highly peaked nature of the streamwise spectrum
near the potential core and its evolution into a more simple rolloff toward the outer edge
has been documented by others previously (see for example Khwaja 1981).

Just to the low speed side of the center of the mixing layer (r/D = 0.57) the streamwise
spectrum has its maximum at the origin. The radial velocity spectrum, however, still
exhibits a maximum away from the origin. This result is consistent with the results of
Bevilaqua and Lykoudis (1977), Cimbala (1984), and Antonia et al (1987) who argue
that, for turbulent free shear flows, the v velocity spectrum is preferred for estimating
the wavelength of the organized motion because it exhibits a more discernible peak at the
the average frequency of the organized motion. The Stp, defined as fD/U,, calculated
from the frequency corresponding to this maximum (i.e., ~ 90 Hz) is Stp ~ 0.45 which
is consistent with the preferred mode discussed by Hussain (1983). At the remaining
positions on the low speed side of the shear layer (r/D = 0.68, r/D = 0.79, /D = 0.90)
all of the spectra have their maximum at the origin.

4.2. Results of the Azimuthal Decomposition

In this section we examine how the azimuthal correlations breakdown into azimuthal
modes. Note, here we present the azimuthal modal structure before application of the
POD in the radial direction. The results are basically the same before and after but
we feel that the data presented this way will be more useful to the community at large.
These extensive azimuthal correlations have only been briefly discussed by Glauser and
George (1987b). Sreenivasan (1984) examined temperature and streamwise velocity az-
imuthal correlations for several /D positions but with limited radial extent. Hussain
and Zaman (1980) examined the streamwise velocity azimuthal correlations for excited
and unexcited jets at three x stations, /D = 1.5,2.8 and 4.13 at the radial locations,
r/D = 0.33,0.40 and 0.467. The streamwise velocity azimuthal correlations obtained
here agree qualitatively with those obtained by Hussain and Zaman at z/D = 2.8 for the
unexcited jet. No other measurements have been reported in the literature of the radial
velocity and Reynolds stress azimuthal correlations.

Equation 2.13 was solved numerically for the complex coefficients which, for the
azimuthal direction, consisted of performing a 48 point transform for each r, »' and
wavenumber (v. Zheng 1991). If equation 2.13 with p = 0 is summed over wavenumber
k1 we can suppress the streamwise dependence. It becomes under these conditions

R;j(r,r',9) = Z Bij(r,r',m)e'™? (4.2)
Bj;; is then defined in terms of R;; as
2m
B;j(r,r,m) =1/2n Rij(r, 7', 9)e™ dy. (4.3)

0
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It is useful to examine in detail the azimuthal correlations for which » = r' so that
various B;; and R;; can be plotted for each radial position in the jet mixing layer.
Selected examples of these are plotted in Figures 8 - 11. For all of the correlations and
their spectral breakdown versus azimuthal modes the progression begins near the center
of the jet at r/d = 0.13 and progresses out to r/d = 0.9 on the low speed side of the
shear layer.

Figure 8(a) shows measurements of R;; at the 8 positions in the jet shear layer. Near
the potential core at /D = 0.13 and 0.24 there is clearly a strong correlation over the
entire 180 deg. span. At the remaining positions in the shear layer, r/D = 0.35 — 0.9
the correlations fall off somewhat more rapidly than that seen at the positions closer to
the potential core, indicating the presence of substantially smaller scale turbulence and
there is good correlation out past 25 degrees (although negative) for all of them.

The corresponding azimuthal mode spectra By are shown plotted in Figure 8(b). The
zeroth mode (axisymmetric mode) can be seen to dominate near the potential core for
r/D = 0.13 — 0.35 indicating a strong ring-like structure in this region. It is interesting
to note that at r/D = 0.35 modes 4, 5 and 6 also start to play a role. As we progress out
further in the shear layer from /D = 0.46 — 0.9 the azimuthal mode spectra are sub-
stantially more broadband than in the potential core region although there is a moderate
peak around azimuthal modes 4, 5 and 6 for these 5 positions.

Figure 9(a) shows measurements of Rq» at the same 8 radial positions as above. At
r/D = 0.13 the radial velocity correlation is seen to go to zero at 90 deg. and then become
negatively correlated. As we progress out further in the shear layer the correlations fall
off more quickly and exhibit less and less of an integral scale.

The corresponding B, spectra are shown plotted in Figure 9(b). The first mode can
be seen to dominate at r/d = 0.13 which suggests that either the ring-like structures flap
back and forth or that they are tilted slightly. This was also seen by Long and Arndt
(1985) and Long et al (1993) from pressure measurements in an axisymmetric jet. As we
proceed out towards the center of the shear layer, r/D = 0.35 and out, the zeroth mode
comes into play along with the first mode as opposed to what was seen in the center
region of the jet where only the first mode dominated. From the center of the shear
layer region and on out the azimuthal mode spectra become more broad band and the
higher modes have significant energy content, indicative of smaller scale structures. It is
interesting to note that the radial velocity azimuthal mode number spectra Bsa do not
exhibit the distinct peaks around modes 4, 5 and 6 as seen in the streamwise velocity
azimuthal mode number spectra Bi;.

Figure 10(a) shows the R33 obtained from application of the continuity equation for
r/D = 0.13—0.71. Note the strong correlation versus azimuthal angle and similar shape
exhibited for all positions across the entire shear layer. These are the azimuthal velocity
azimuthal correlations so this behavior is not unexpected. Also note how all of the
correlations become negative beyond 90 degrees.

The corresponding Bss are shown plotted for the 8 radial positions in Figure 10(b).
All of these spectra are dominated by mode 1 and have basically the same shape for all 8
radial positions. Note how there is no contribution to B33 from mode 0. This is a direct
result of the symmetry conditions discussed earlier.

Figure 11(a) shows measurements of R;5 at the same 8 radial positions. At r/D = 0.13
there is clearly a strong correlation over the entire 180 deg. span much the same as was
seen in Figure 13 at the same position. At /D = 0.35 and 0.46 the correlations fall
off very fast indicating the predominance of the small scale structures at these positions
just to the high speed side of the shear layer. In fact at r/D = 0.35 the integral scale
is estimated to be less than 10 degrees. For r/D = 0.57 — 0.9 , the low speed side of
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the shear layer, the correlations become stronger again and exhibit significant correlation
for up to 40 degrees or so (again negative beyond about 20 degrees as was seen in the
R11). Tt is important to note this behavior of R;s as the mixing layer is traversed: the
strong correlation near the potential core; the lack of correlation just to the high speed
side of the shear layer; and the stronger correlation as we progress to the low speed side.
Note that the normal components shown above did not exhibit this behavior, but rather,
the correlation versus ¥ became less or stayed the same as the shear layer was traversed
towards the low speed side.

Figure 11(b) shows the corresponding Bj2. Near the center of the jet, r/D = 0.13
and 0.24, modes 0 and 1 clearly dominate and the higher modes contribute little to the
spectrum. For r/D = 0.35 and 0.46, just to the high speed side of the shear layer center,
the lower modes also contribute, although in a negative fashion, but the higher modes all
make a significant contribution and the spectrum is more broadband. This is consistent
with what was observed in the correlations at the same positions. All of the B;s spectra
on the low speed side exhibit significant contributions from azimuthal modes 4, 5 and 6.

The preference for the fourth, fifth and sixth modes as seen in all of the above spectra
except for the Bssz is intriguing. A sixth-lobe preference (although weak) was seen by
Sreenivasan (1984) at a position closer to the potential core at /D = 1. A detailed
stability analysis for vortex rings has been carried out by Widnall and Sullivan (1973).
From this analysis the number of preferential lobes is seen to depend on the circulation
of the vortex as well as on the ratio of the vortex core radius to the ring radius. Under
certain combinations of the above conditions they noticed a sixth-lobe preference. Thus
the sixth lobe noticed in this work is not inconsistent with the results from Widnall and
Sullivan (1973).

In summary, the wo azimuthal correlations are dominated by low order modes (0-2)
near the potential core, and become broadband as one proceeds toward the center of the
mixing layer. Then, toward the outside of the shear layer, modes 4-6 play an increasingly
important role, as can be seen in Figure 11(a). These observations are consistent with
those of Hussain (1986), in that they indicate either that the incoherent turbulence is
convected toward the center of the large structure, or is generated there.

5. Results from the Proper Orthogonal Decomposition
5.1. Overview

A block diagram is shown in Figure 12 which summarizes the various phases of the study.
The diagram is set up with the most complete problem at the top and various sub prob-
lems below. The complete problem consists of a four-dimensional (3 space plus time)
vector decomposition which requires measuring A;;(r, ', k1, m, f). This quantity was not
measured completely so only partial decompositions were possible. Since there were a
number of these (and keeping straight which is being discussed can be a real challenge),
the various partial decompositions that were performed are shown as 3 different paths in
Figure 12: From left to right, the various scalar, partial vector and full vector decompo-
sitions respectively. The section or reference where each of these are discussed is stated
in the particular block. The order of the presentation in the text begins at the bottom of
each path in the block diagram, and proceeds upward. The first results ( the lower-most
blocks), already presented in Section 4, are the velocity moments and spectra which can
be obtained from the various decompositions or computed directly from the raw data.
In Section 5.2 a two-dimensional version, partial vector version of the POD (radius plus
time) is presented. Since the instantaneous velocity is known as a function of radius
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and time, this two-dimensional version allows for an examination of the instantaneous
structure as obtained from the POD (that is, a partial projection as indicated in equation
2.6 can be performed). We are not able to do this in three-dimensions with the existing
data base because the instantaneous velocity was not measured simultaneously at all
azimuthal locations. The three-dimensional (radius, azimuthal angle plus time) scalar
and partial vector decompositions are not presented here because they are discussed in
Glauser and George (1987a) and Glauser and George (1987b) respectively and many of
the conclusions are similar to what is observed in the full vector versions. In Section
5.3, full vector decompositions are presented for three-dimensional (radius, azimuthal
angle and the streamwise direction) and one-dimensional (radius) configurations. The
one-dimensional decomposition is helpful since it allows us to examine the radial behav-
ior of the eigenfunctions without having to arbitrarily select a wavenumber/azimuthal
mode number combination at which to do so. The results from the three-dimensional
full vector decomposition, when interpreted along with the azimuthal dependence of the
various correlations and their breakdown versus azimuthal modes as discussed in section
4.2, give much insight into the behavior of coherent structures in the near field jet mixing
layer.

5.2. Two-Dimensional Application of the Proper Orthogonal Decomposition

A version of the proper orthogonal decomposition, where there is no azimuthal or stream-
wise dependence, which utilizes the velocity cross-spectra, can be derived from equation
2.10 for a fixed streamwise location T by setting ¢, the separation in 6, equal to 0. The
kernel in this case, S;;(r,7’, f,T), is defined as the Fourier Transform of R;;(r,r',7,7)
again with ¥ = 0. Using the measured values of the this cross spectrum, the reduced
version of equation 2.10 can be solved numerically for the eigenvalues and eigenfunctions.
The Fourier transform of the velocity can be reconstructed from these eigenfunctions by
using an appropriate form of equation 2.6

N
ai(r, £,7) = Y a™(f,2)8{" (r, £,7) (5.1)
n=1
where the random coefficients are defined in this case by

mmm=/mmﬁaw“mﬂmMn (5.2)

A scalar version of this application was presented by Glauser et al (1985, 1987). Here we
will discuss a partial vector version of the two-dimensional application.

In this experiment S;;(r,r’, f,Z) (with ij = 11, 22 and 12) was obtained on a 828
grid in 7 and 7' (from r/D = 0.13 to /D = 0.90) along with 512 points in f. (It
should be noted that this data base is just a subset of the data base which includes the
azimuthal variation, but here the azimuthal variation has been suppressed by setting
¥ = 0.) Because this is a only a partial vector decomposition and there is a finite grid in
r, the number of eigenvalues and corresponding eigenfunctions obtained in this case will
be 2 times the number of grid points (Moin and Moser 1989) so that N = 16 in equation
5.1 The numerical approximation consists of replacing the integral of the modified version
of equation 2.10 by a suitably chosen quadrature rule; the trapezoidal rule was chosen
for its accuracy and simplicity. For more details on the numerical approximation see
Glauser (1987) and Moin and Moser (1989).

The cross spectra at any radial position are given by summing the individual contri-
butions to various spectra, Sf;(r,r, f,T) with r = 7' from the proper orthogonal modes.
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This is written as
(r,r, £, ) Z A (£ (r, £,2)6 " (r, £, 7). (5.3)

As q goes to N where N is the total number of eigenvalues and eigenfunctions (equal to
2 time the number of grid points in r, because of the two spatial components, which is
8 in this case) the total particular spectrum should be represented.

Figure 13 shows the first 3 eigenspectra plotted as a function of frequency. In this
case the eigenspectra represent the contribution to the kinetic energy spectra from the
streamwise and radial velocity integrated across the shear layer. The first mode domi-
nates and contains about 40 percent of the total energy, consistent with what was found
in the scalar case as described by Glauser et al (1985, 1987). The component velocity
spectra at r/D = 0.46, with ij = 11,22 in Equation 5.3, are shown plotted in Figure
14 with the superposition of the results of Equation 5.3 for ¢ = 1, 2 and 3. Note how
the first mode contains a significant amount of the energy and how close the ¢ = 3 case
is to the original for these spectra. This rapid convergence is consistent with what was
observed in the scalar problem.

It is also of interest to examine the reconstruction of the instantaneous velocities for
this situation. Equations 5.1 and 5.2 are applied to a particular record and the results
inverse Fourier transformed to obtain the instantaneous streamwise and radial velocity
signals as a function of time. The same approach as applied to the spectra to study their
convergence is applied to the instantaneous velocities as well. The original u, v velocity
field for the time record being examined is shown plotted in Figure 15(a) viewed in a
reference frame moving at 12 m/s. The contribution from the first mode is shown in
Figure 15(b). The basic characteristics are recovered with only one mode but the fine
detail is not captured. The contribution from the first 3 POD modes is shown in Figure
15(c). Note how close the result is to the original vector field.

These results demonstrate the proper orthogonal decomposition to be quite efficient at
organizing data. Moreover, the instantaneous properties of the random signal have not
been lost, but only organized into the appropriate modes. So efficient has the scheme
been at organizing the energy that only a few terms were needed to almost completely
represent the instantaneous signal. These results, first presented for a 7z7 grid in r by
Glauser et al (1985, 1987), gave early support for the idea that the proper orthogonal
decomposition provides an excellent set of basis functions for use in a dynamical systems
approach to turbulence as discussed by Aubry et al (1988), Deane et al (1991), Glauser
et al (1991, 1992), Rajaee et al (1994) and summarized by Berkooz et al. (1993).

5.3. Three-Dimensional Vector Application of the Proper Orthogonal Decomposition
using Taylor’s Hypothesis

These results extend the work discussed in Section 5.2 to include the azimuthal and
streamwise spatial variation in the jet. It should be noted that this experiment was
performed at one streamwise point, /D = 3, so as a first step Taylor’s hypothesis was
utilized to obtain the streamwise development so that there is no time dependence in this
application. The streamwise and radial velocity measurements are used in conjunction
with the continuity equation to obtain the other components of the tensor to be used in
the integral eigenvalue problem as discussed in Section 2.2. This results in a full vector
problem for the 3 spatial directions as given in Equation 2.14 because all of the velocity
components have been accounted for. Using the measured values (and those obtained
by application of equation 2.12) of A;;(r,7’', k1, m), equation 2.14 is solved numerically
for the eigenvalues and eigenfunctions. In this case A;;(r,r’',m, k1) was obtained on a
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828 grid in r and ' (from r/D = 0.13 — r/D = 0.90) along with 25 points in ¢ (from
0 to m because of the azimuthal symmetry in the jet) and 512 points in k;. Because we
have the full vector field, there are 3N (328 = 24) eigenvalues and eigenfunctions for each
wavenumber mode number combination.

5.3.1. Results of a One-Dimensional Vector Decomposition

A one-dimensional version of the POD allows for the radial variation of the eigen-
functions to be examined in a straightforward manner without having to arbitrarily pick
a wavenumber mode number combination at which to examine the radial behavior (cf.
Moin and Moser 1989). The convergence of the various components of the kinetic energy
and Reynolds stress can also be easily examined with this definition. The problem to be
solved can be obtained by setting p and ¥ = 0 in R;;, as defined in equation 2.13, and
using the result as the kernel in the integral eigenvalue problem (Note: This is equivalent
to summing A;;(Z,r,r’, k1, m) over m and integrating over k). This results in

/ Ry )8 (¢ ) dr’ = XM (1), 0§ =1,2,3 (5.4)

where r and 7’ denote different radial positions in the mixing layer and Z denotes the
fixed value of z/D = 3.

The radial behavior of the first 3 POD eigenfunctions ¢\ (r), weighted by (A(™)1/2,
are shown plotted in figures 16 and 17 for the streamwise and radial velocity respectively.
The eigenfunctions for the azimuthal velocity exhibit similar behavior. Note how ¢; and
¢2 have the same sign for all three eigenfunctions throughout the domain. This results in
a positive contribution from each individual POD mode to the production of turbulence
kinetic energy since the mean gradient is negative across the shear layer. Also note how
the higher POD modes exhibit more zero crossings. Both of these results are consistent
with the results of Moin and Moser (1989) and Chambers et al (1988) who note the closer
resemblance to Fourier modes with increasing order. It is important to note that in the
jet we cover the whole domain in our integration so that we need not be concerned with
partial domains as discussed in Moin and Moser (1989).

As was the case in section 5.2 for spectra, the Reynolds stresses and kinetic energy
at any radial position can be obtained by summing the individual contributions to the
particular Reynold’s stress, with r = 7/, from the orthogonal eigenfunctions. This is
given by

q
ww = Y Ao (r)g" (). (5.5)
n=1

As q goes to N, where N is the total number of eigenvalues and eigenfunctions, the total
particular Reynolds stress or components of the kinetic energy should be represented.
Figures 18 - 20 show plots of the mean square streamwise and radial velocity and the
Reynolds stress as a function of radius with the contribution of one term (q=1) from the
right hand side of Equation 5.5, with 4,5 = 11, 4,5 = 22 and 4, j = 12, superimposed on
it. The first proper orthogonal mode is seen to contribute approximately 40 percent to
the mean square streamwise and radial velocities and 85 percent to the Reynolds stress.
This result is consistent with those of Moin (1984). The results of equation 5.5 with
g = 24 (the total number of POD modes) were compared to the original moments and
found to be the same to within machine accuracy, indicating that the software used to
extract the eigenfunctions is internally consistent.

It is interesting to note that the contribution to the mean square streamwise, radial
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and azimuthal velocities from the first proper orthogonal mode is only about 40 percent
as compared to 85 percent for the Reynolds stress. Recall that Lumley (1967) originally
argued that the first term in the expansion could be identified as the large eddy. On
the other hand, Hussain (1983) argued that a coherent structure is characterized by
high levels of coherent Reynolds stress, but not necessarily a high level of kinetic energy.
He further argues that if an eddy is viewed as a proper orthogonal eigenmode, then a
coherent structure is not an eddy. The resolution of these two points of view lies in
the argument put forth by Glauser and George (1987b) (see also George 1988) that the
eigenfunctions are simply the building blocks from which an eddy is comprised. As the
eddy or coherent structure evolves, different eigenmodes will be dominant at different
times and phases in its life cycle. This will be discussed in the next section.

5.3.2. Results of the Three-Dimensional Vector Decomposition

A three-dimensional vector inhomogeneous problem was solved using the proper or-
thogonal decomposition. For each mode number wavenumber combination equation 2.14
was solved numerically using the values of A;;(r,r',m, k) obtained from the measure-
ments and application of the continuity equation.

The first three eigenspectra for azimuthal modes 0 through 3 are shown plotted in
Figures 21 - 24. The first POD eigenspectrum for each azimuthal mode is seen to domi-
nate (this was the case for the remaining modes also) indicating that one term may be
adequate for the description of the large eddy in the inhomogeneous directions. This is
consistent with the earlier work discussed in Section 5.2 where the first term was seen
to dominate as well. Note, however, the clear difference in the amplitude and wavenum-
ber dependence of the various eigenspectra for the azimuthal mode numbers presented.
The dominant eigenspectra for the lower modes (0 - 2) exhibit a maximum away from
the origin; the maximum occurring at progressively lower wavenumber as the azimuthal
mode number increases. The dominant eigenspectra for the higher modes however, have
their peak at the origin (although not shown, the basic structure of the POD eigenspec-
tra for azimuthal modes 4 and higher are similar to those for azimuthal mode 3). This
highly peaked nature of the eigenspectra for the lower order azimuthal modes and their
evolution into a simple rolloff for the higher azimuthal modes is similar to the radial
behavior of the velocity spectra with increasing radius discussed in Section 4.2. The
relative amplitudes of the eigenspectra also vary significantly as a function of azimuthal
mode number. The amplitude is greatest for mode 0 and progressively decreases until
mode 2. The amplitude then continually increases until mode 5 after which it decays
monotonically. These results are consistent with the results of the azimuthal decompo-
sition discussed in Section 4.4.1. There, azimuthal modes 0 and 1 were seen to play an
important role near the potential core and modes 4, 5 and 6 farther out radially in the
mixing layer.

This wavenumber /azimuthal mode number interdependence can be seen more clearly
by examining Figure 25 which is a plot of the dominant POD eigenvalue versus stream-
wise wavenumber and azimuthal mode number. The fairly complicated structure indi-
cates that there may be an exchange of energy or an interaction between streamwise
wavenumbers and azimuthal mode numbers. In particular, there is an apparent energy
path (remember that the eigenvalues are energy integrated across the jet shear layer)
between the lower modes and modes 4, 5, and 6. This would not be inconsistent with
the secondary instability type phenomenon, manifested by streamwise vortex structures
as discussed by Bernal and Roshko (1986). This point will be discussed in more detail in
the section which follows. The peak in the wavenumber direction for m = 0 corresponds
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to the Strouhal frequency of the jet. The peak in the mode number direction near k; =0
is at approximately mode 5.

In summary, the results of the three-dimensional vector decomposition are consistent
with all of the earlier observations, with the following additional features:

e The inclusion of the azimuthal direction reveals substantial insight into the three-
dimensional structure of the jet mixing layer not available from the various lower-
dimensional problems presented. This conclusion is obvious from the results of the
azimuthal decomposition (v. Section 4.2) which reveals the existence of a coherent ring-
like structure dominated by the axisymmetric mode near the potential core, but with
the fourth, fifth and sixth azimuthal modes playing a significant role from the center of
the mixing layer and outward toward the low-speed side of the mixing layer. It is even
more clearly manifested in the eigenspectra extracted for the three-dimensional case dis-
cussed above. The clear difference in the amplitude and wavenumber dependence of the
various eigenspectra for the azimuthal mode numbers presented is in stark contrast to
the lower-dimensional problems discussed. In the lower-dimensional results the eigen-
spectra exhibit simple role off behavior (cf. Figure 13), like the higher azimuthal mode
number behavior of the eigenspectra for the three-dimensional case. This is probably a
manifestation of the type of aliasing often observed when lower-dimensional spectra are
obtained from the full 3-dimensional spectra (v. Tennekes and Lumley 1972). Therefore,
the highly peaked nature of the eigenspectra for the lower order modes and their evolu-
tion into a more simple rolloff for the higher azimuthal modes can only be determined
from the three-dimensional decomposition. These results clearly show the limitations of
the lower-dimensional problems. They also indicate that experiments where only slices
of the flow are examined (i.e., only one spatial grid point in a particular direction) are
clearly aliased by the modes not resolved. This can be viewed, in the context of Section
3.5 ( Effect of the Measurement Grid in 4), as, in effect, trying to resolve the 9 direction
with only one grid point, and should cause serious concern to all who infer structure
information from a single azimuthal slice. The problem of spatial aliasing is discussed in
some detail by Glauser and George (1992).

e The inclusion of the azimuthal velocity components of the correlation tensor through
application of Taylor’s hypothesis and the continuity equation results in a change in the
eigenspectra. The basic shapes of the eigenspectra are quite similar, although the am-
plitudes differ (except for mode 0), those obtained utilizing continuity being the higher.
This is as expected since the eigenspectra which are calculated from application of Tay-
lor’s hypothesis and continuity use the full tensor which includes the contribution from
the azimuthal velocity (see Zheng 1991).

6. Summary and Conclusions: A Two-Ring Model for the Jet

A proper orthogonal decomposition has been used to extract eigenvectors from two-
point velocity measurements in the mixing layer of a high Reynolds number axisymmetric
jet. Cross-spectra were measured over an 8x8x48x512 grid at one streamwise location,
z/D = 3. Application of the proper orthogonal decomposition in the radial direction
yields the lowest order eigenfunction which contains 40 percent of the turbulent kinetic
energy and typically 85 percent of the various Reynolds stresses in the jet mixing layer.
It was possible to almost completely reconstruct instantaneous signals of the radial and
streamwise velocity in the jet mixing layer from these proper orthogonal eigenfunctions
using only the first few modes.

Further decomposition in the azimuthal direction, utilizing the harmonic decomposi-
tion, reveals the existence of a coherent ring-like structure dominated by the axisymmet-
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ric mode near the potential core, but with the fourth, fifth and sixth azimuthal modes
playing a significant role from the center of the mixing layer and outward toward the
low-speed side of the mixing layer. The Reynolds stress azimuthal correlations and their
breakdown into azimuthal modes show that the incoherent turbulence is concentrated
in the center of the coherent structure, indicating that it has either been generated or
advected there.

From the results of the three dimensional vector proper orthogonal decomposition and
the azimuthal harmonic decomposition it is possible to suggest a low-dimensional model
for the evolution of coherent structures in the jet mixing layer (Glauser and George
1987b). This life cycle begins with inception of rings of concentrated vorticity from an
instability of the mean flow. A mutual interaction then occurs between two different rings,
analogous to the first stages of the leapfrogging type phenomenon. A vortex instability
arises from the further interaction of these two rings which finally results in a cascade of
energy to smaller scales by vortex breakup and stretching. These four stages are shown
in Figure 26 and described in detail below:

e (i) Formation From Base Flow: Vortex ring-like concentrations arise from an
instability of the base flow, the induced velocities from vortices which have already
formed providing the perturbation for those which follow. This feedback mechanism
has been suggested by others as well (e.g. Hussain 1983).

e (ii) Attempted Leapfrogging: These rings then behave like the text-book examples
of groups of inviscid rings. While multiple ring interactions may occur, the interaction
between pairs of rings dominates, at least in the absence of forcing. In particular, a rear-
ward vortex ring overtakes the vortex ring ahead of it, the rearward vortex being reduced
in radius and the forward are being expanded by their mutual interaction analogous to
the first stages of the leapfrogging type phenomena (v. Yamada and Matsui 1978).

e (iii) Instability: The rearward ring is stabilized by the reduction in its vorticity
and radius, and the increase in its core area, thus the predominance of the Oth mode
on the high speed side (the potential core region of the jet). The forward ring has its
vorticity increased by stretching as it expands in radius. This narrowing of its core while
the radius is expanding causes the vortex to become unstable, thus the predominance
of azimuthal modes 4-6 from the center of the shear layer outwards. This is similar to
the Widnall-Sullivan mechanism (v. Widnall and Sullivan 1973 and Yamada and Matsui
1978). The growing wavy deformation of the leading vortex ring causes it to acquire a
streamwise component of vorticity which accelerates the instability. This is consistent
with the description of Bernal and Roshko (1986), the numerical results of Martin and
Meiburg (1991) and those of others (v. Hussain 1986, Liu 1989).

e (iv) Breakdown and Entrainment: The continued effect of the rearward vortex on
the forward and the now highly distorted ring, accelerates the instability until its vorticity
is now entirely in small scale motions, in effect an energy cascade from modes 4-6 all
the way to dissipative scales. This incoherent turbulence is swept to the outside by the
induced velocity from the rearward ring. Then some of it is entrained by the still-intact
rearward vortex as it passes by. Some of it is even entrained back to the center of the
mixing layer, thus explaining the broadband character of the Reynolds stress at positions
near the center of the shear layer (v. Figure 11). This is consistent with Hussain (1986)
who argues that the incoherent turbulence is advected to the centers of the coherent
structures. In this context then, this collecting of the debris, both small-scale vorticity
and fluid material, would be what has been recognized as “pairing”. This entrainment of
small scale vorticity into the core of the surviving rearward vortex significantly amplifies
the small scale vorticity by stretching, and increases the local dissipation rate there.

The entire process is then repeated as a new rearward vortex overtakes and destabilizes
the one ahead of it. Recent work of Lim (1997) provides evidence of this type of two-ring
interaction.
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What is new in the above description is the sequencing of the events. The above
sequence is consistent with the observations of this experimental work and others (v.
Hussain 1986, Liu 1989 and II) and the recent numerical results of Martin and Meiburg
(1991). In the absence of full field measurements (all positions simultaneously), the
model put forth above must be viewed as only a hypothesis.

Glauser et al (1992) have recently developed a proper orthogonal decomposition based
dynamical systems model for the jet shear layer using the eigenfunctions reported here
which has given some insight into the temporal behavior of these events. They find clear
evidence of pairs of vortices interacting in the streamwise direction resulting in a transfer
of azimuthal to streamwise vorticity. These results are not inconsistent with the initial
stages of what has been proposed here. They are not able to shed light on the later
stages of the coherent structures life-cycle because of the low-dimensional nature of their
simulations in which the small scales are not resolved but modeled.

Further confirmation of the model proposed here will require experiments of sufficient
spatial and temporal resolution to verify the sequencing of the later stages of the life-
cycle of the coherent structure. These experiments will provide the needed information
to objectively extract the sequencing of events throughout the entire life-cycle of the
coherent structure and thus will require measurements simultaneously at all locations.
Such experiments, using hundreds of probes to sample the full flow field simultaneously,
are presented in part 2 of this paper and lend credence to the afore-mentioned model.
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FIGURE CAPTIONS

Figure 1. The facility used for producing an isothermal, incompressible, axisym-
metric air jet.

Figure 2. One block of instantaneous streamwise and radial velocities for eight
radial locations, plotted as a function of time.

Figure 3. Mean velocity U normalized by U, = 21m/s: (x), results of present
study; (-), results of Hussain and Clark (1981).

Figure 4. RMS streamwise velocity ' normalized by U, = 21m/s: (x), results
of present study; (-), results of Hussain and Clark (1981).

Figure 5. RMS radial velocity v’ normalized by U, = 21m/s: (x), results of
present study; (-), results of Hussain and Clark (1981).

Figure 6. Streamwise velocity spectra at /D = 3: (a) /D = 0.13 — 0.46, (b)
r/D = 0.57 — 0.90.

Figure 7. Radial velocity spectra at /D = 3: (a) r/D = 0.13 — 0.46, (b)
r/D = 0.57 — 0.90.

Figure 8. (a) Streamwise velocity azimuthal correlations, Ry, (b) Streamwise
velocity azimuthal mode number spectra, Bii, for 8 radial positions in
the jet shear layer at /D = 3.

Figure 9. (a) Radial velocity azimuthal correlations, Ras, (b) Radial velocity
azimuthal mode number spectra, Byo, for 8 radial positions in the jet
shear layer at /D = 3.

Figure 10. (a) Azimuthal velocity azimuthal correlations, Rs3z, (b) Azimuthal
velocity azimuthal mode number spectra, Bss, for 8 radial positions in
the jet shear layer at /D = 3.

Figure 11. (a) Reynolds stress azimuthal correlations, Ri2, (b) Reynolds stress
azimuthal mode number spectra, Bi», for 8 radial positions in the jet
shear layer at z/D = 3.

Figure 12. Block diagram which summarizes various phases of the study.

Figure 13. First 3 eigenspectra from partial vector case.

Figure 14. Contributions from the first, first two and first 3 proper orthogonal
modes to: (a) a streamwise velocity spectrum, (b) a radial velocity spec-
trum; at r/D = 0.46 for the partial vector problem.

Figure 15. (a) An original u, v velocity vector field, viewed in a frame of reference
moving at 12m/s. (b) Contribution from the first POD mode to the
original u, v velocity vector field. Note the large scale features are similar
to what is observed in (a) but the small scale features are lost. (c)
Contribution from the first 3 POD modes to the original u,v velocity
vector field. Note how most of the small scale features are recovered.

Figure 16. First 3 POD streamwise velocity eigenfunctions plotted as a function
of r/D, weighted by (A\(M)/2,

Figure 17. First 3 POD radial velocity eigenfunctions plotted as a function of
r/D, weighted by (A(™)1/2,

Figure 18. Mean square streamwise velocity plotted as a function of /D with 1
POD mode contribution superimposed.

Figure 19. Mean square radial velocity plotted as a function of /D with 1 POD
mode contribution superimposed.

Figure 20. Reynolds stress plotted as a function of /D with 1 POD mode con-
tribution superimposed.
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Figure 21. First 3 eigenspectra for azimuthal mode 0, plotted as a function of
streamwise wavenumber.

Figure 22. First 3 eigenspectra for azimuthal mode 1, plotted as a function of
streamwise wavenumber.

Figure 23. First 3 eigenspectra for azimuthal mode 2, plotted as a function of
streamwise wavenumber.

Figure 24. First 3 eigenspectra for azimuthal mode 3, plotted as a function of
streamwise wavenumber.

Figure 25. Dominant eigenspectra plotted as a function of streamwise wavenum-
ber and azimuthal mode number.

Figure 26. Four stages of turbulence production from two-ring model.
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