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Abstract

Some of the possibilities for inferring the structure of com-
plicated flows from simultaneous measurements at many points
are reviewed. Conditional sampling, pseudo flow visualization,
stochastic estimation, and the proper orthogonal decomposition
are briefly reviewed and illustrated by example. Resolution cri-
teria for multi-point spatial arrays are proposed which minimize
the possibilities for misinterpreting the data.

1 INTRODUCTION

One of the most important attributes of the fluid dynamicist is the
ability to visualize the fluid motions in the problem of interest. Flow
visualization by tagging fluid material has a long and rich history, and
has stimulated scientist, engineer and artist alike. Many a student, not
to mention experienced investigator, has been fascinated by the crisp
and revealing motion pictures of the NSF Fluid Mechanics Film series
[34]. More than one has wished that he had the capability of revealing
the details of his own flow with simple dye, smoke or hydrogen bubble
experiments. But alas! It is an unfortunate fact of nature that the same
fluids whose mysterious motions we seek to unravel, conspire through
molecular diffusion and other processes to invalidate these simple tools.
Thus most have had to recognize the futility of such efforts in a large
number of flow environments, and have had to settle for far, far less
information about what the flow is really doing. (The photo collection
by Van Dyke [44] is proof, however, that at least a few have succeeded.)

For the experimentalist, this has usually meant settling for measure-
ments of the average properties of the flow at a relatively small number
of points in it. These limited experimental capabilties have undoubt-
edly had a negative effect on the efforts of theoreticians, both because
of the lack of possibility for comparison with experimental data and
the failure to overturn theories which were incorrect. One need only
witness the role being played by supercomputer simulations of flows (in
combustion, for example) to realize what might have been had not the



experimentalist had to settle for so little. Happily, for the experimen-
talist at least, it will be some time before full Navier-Stokes simulations
of most engineering problems will become possible.

But the CFD community has not been the only one to benefit from
the technical advances in hardware. One of the opportunities presented
by the advances in electronics and computers over the past two decades
is the possibility of making many measurements at many points in the
flow simultaneously. Experiments utilizing tens of probes together have
become routine, and now experiments using hundreds of probes are in
the planning or in progress. The tranducers vary from thin film gauges
to hot-wires, from optical scanners to holographic interferometry; and
the flow environments vary from gas turbines to trees (Yes, real trees
with branches and leaves!), from boundary layers to combustion cham-
bers. All have the common objective: to obtain by computer imaging
and statistical means a picture of what is really happening.

It is not the intent of this paper to provide a review of the variety of
efforts hinted at above. Nor is it the intent to review the multiplicity of
transducers which can be used for multi-point measurements. Instead,
the focus will be two-fold:

e First, to demonstrate how measurements at many points can be
used to infer the structure of the flow,

e Second, to decide what constraints must be placed on the mea-
surements to ensure that proper interpretation is possible.

The first objective will be approached by a brief review of four basic
techniques for handling mult-point data; namely, conditional sampling,
pseudo flow visualization, stochastic estimation, and the proper orthog-
onal decomposition. To appreciate the need for these one must under-
stand the character of high Reynolds number, often turbulent, motions.
As modern full Navier-Stokes computer simulations have made clear,
knowing the data at many points in the flow does little in and of itself
to make clear what is happening because of the chaotic nature of the
flow. The key to understanding usually lies in what is done to the data
to bring the underlying order (we hope it’s order) to the foreground.
The four techniques chosen for discussion have found wide utilization
over the past decade, and all hold forth the promise of extensive ap-
plication in the future. All four will be illustrated by examples from
the literature. Although the examples chosen all involve applications of
hot-wire anemometry, there is nothing intrinsic to the techniques under
discussion which limits their application. Thus they can be applied to
any multi-point transducer array in most environments.

The second objective will be to provide resolution criteria for multi-
point flow measurements. This is necessary if the purpose of the exper-
iment is not to simply facilitate taking large quantities of single point
data, but rather to enable understanding the flow’s spatial and tem-
poral structure. This resolution objective will be accomplished by first
reviewing the requirements for single point measurements, then extend-
ing these requirements to include the constraints on spatial arrays in
various environments. The goal (only partially realized) is to place the
theory of spatial sampling at the same level of understanding as that
for the digital sampling of time series. Although it will be necessary
and convenient to represent the signals by their Fourier and proper
othogonal decompositions (for homogeneous and inhomogeneous flows
respectively), the results are believed to have wide applicability to all
kinds of multi-point measurements, especially when used in conjunction
with the interpretation techniques described above.



2 TECHNIQUES FORIDENTIFYING FLOW
STRUCTURE

The utilization of rakes of probes with good spatial resolution presents
the opportunity to examine the structure of turbulent flow fields in ways
that would not otherwise be possible. In this section several approaches
will be discussed. The first involves using the simultaneous velocities
obtained from rakes of hot-wires in conjunction with conditional sam-
pling techniques. The second, termed pseudo flow visualization (PFV),
consists of using the simultaneous velocity measurements obtained with
hot-wire rakes to generate instantaneous velocity profiles. From these
profiles the spatial extent and characteristic frequencies of the large
scale structures can be determined. The third and fourth approaches
involve using the simultaneous velocities in conjunction with stochastic
estimation and proper orthogonal decomposition techniques.

2.1 Conditional Measurements

Simultaneous measurement using rakes of hot-wire probes have been
utilized in conjunction with conditional sampling techniques by numer-
ous authors to examine the large scale features of turbulent flows. These
investigations have helped shed new light on the turbulence structure
in a variety of flows including wakes, jets, free shear layers and bound-
ary layers. In the following paragraphs, several examples have been
chosen as illustrative; no attempt has been made, however, to provide
a comprehensive review of the numerous applications.

In one of the first extensive applications of rakes of hot-wires, Black-
welder and Kaplan [6] examined the wall structure of the turbulent
boundary layer using conditional sampling techniques. They used the
two different rakes shown in figures 7?7 and ?7, the first to examine
the instantaneous variation of the streamwise velocity in the direction
normal to the flat plate and the other to examine the instantaneous
variation in the spanwise direction. They found that the instantaneous
streamwise velocity measurements normal to the wall exhibited a high
degree of coherence over a large area in the direction normal to the wall.
They also found from the spanwise rake measurements that there was
evidence of a large scale correlation in the spanwise direction farther
out in the boundary layer (y* = 15), but no evidence of the streaks
that are apparent (from flow visualization studies) in the lower regions
of the boundary layer. From their conditional measurements they con-
cluded that the normal velocity was directed outwards in regions of
strong streamwise-momentum deficit, and inwards when the stream-
wise velocity exceeded its mean value.

Teitel and Antonia [40] used an array of cross-wire probes in a fully
developed turbulent duct flow. The rakes were deployed in the plane
of mean shear to examine the interaction between the opposite shear
layers, provided simultaneous information on the turbulence character-
istics of the shear layers on either side of the centerline. A significant
finding of their work was that instantaneous quadrant-2 events (u neg-
ative and v positive) on one side of the centerline can almost reach the
opposite wall. It should be noted that this information was obtainable
only from a rake of wires. They then argued that the contribution from
quadrant-2 events to the Reynolds shear stress is smaller in duct flow
than in a boundary layer, reflecting the mutually inhibiting effect of the
flow structures associated with the opposite shear layers. Antonia and
his colleagues (v. Antonia et al [3]) also used a similar arrangement to



examine the turbulent far wake of a circular cylinder. They were able
to identify, using an array of 8 cross-wires, structures which were both
symmetric and antisymmetric about the centerline.

The spanwise structure in the two-dimensional mixing layer was
examined by Browand and Troutt [7]. They used a rake of 12 hot-wires
across the span of the wind tunnel. Computer visualizations of the
instantaneous hot-wire outputs showed that the large scale structures
extended across the wind tunnel and that there was some spanwise
irregularity. They inferred from this that the spanwise irregularity is
related to interactions between adjacent vortices.

Hussain and his colleagues at Houston (v. Hussain [24]) have devel-
oped a technique for the “eduction” of structure which requires a rake
of cross-wires. From these rakes they record the instantaneous velocity
traces. They then smooth these traces via short-time averaging and in-
fer the time evolution of ‘pseudo vorticity’ contours in the plane of the
sensors. (Note that actual vorticity measurement would have required
substantially greater resolution than was possible in the experiment.)
Others, such as Nagib and his coworkers [33] at IIT, have used rakes of
wires to study transition in various flows.

2.2 Pseudo Flow Visualization

All of the examples cited above plotted simultaneous velocity traces
to gain insight into turbulent flows. This has recently been extended
into a technique called pseudo-flow visualization (PFV), first detailed
by Delville et al. [11] who utilized hot-wire rakes with high spatial reso-
lution to create a graphical representation of the instantaneous velocity
interactions in a flow field. Since conventional flow visualization tech-
niques break down at high Reynolds numbers due to turbulent diffusion,
pseudo flow visualization methods provide an alternative technique for
visualizing the flow field in such cases.

The PFV method can be illustrated by the recent studies of Ukeiley
et al [43] who examined the turbulent flow in a lobed mixer, a device
for increasing mixing by enhancing streamwise vorticity (see figure 77?).
The rake of single component hot-wires shown in figure 77, was used to
collect a record of instantaneous streamwise velocity-time traces. The
rake contained 15 probes, each having a 5 micron tungsten wire with
a sensing length of 1 mm. The rake spanned across a full lobe width
with a hot-wire separation distance of 2.7 mm. In spite of the scope
of the experiment, it was possible to collect the data with a personal
computer data acquisition system.

Traditional analysis of hot-wire data involves plotting the instanta-
neous velocities at one location in space. However, a rake of hot-wires
allows instantaneous velocities across the spatial extent of the rake to be
plotted at each sampled time interval, thereby permitting insight into
the relationships among all the measurements as time evolves. Fig-
ure 7?7 demonstrates the comparison between the PFV and the more
traditional way of plotting instantaneous velocities.

PFV plots were created at five positions across the center lobes
at each of three locations, 50, 100 and 150 mm downstream of the
lobed mixer (refer to figure ??). Figures ?? - ?? display the results
obtained at these spatial locations. At 50 mm downstream there is a
discernible difference between the five visualizations. Positions 2 and
4 show minimal fluctuations and small gradients, while positions 1, 3
and 5 are strongly indicative of the shear regions created by the lobes.
At 100 mm downstream, visualizations of positions 1, 3 and 5 indicate



further development of these shear regions, while positions 2 and 4 show
the beginning development of interactions between the two streams. By
150 mm downstream there is almost no difference in the PFV patterns
between all five positions. This last set of pseudo flow visualizations
suggest an increase in turbulence mixing, presumably at the expense
of the mean streamwise vortices which have been shown by Eckerle et
al [12] to begin to decay in this downstream region. Figure ?? shows
the comparison of the PFV to a spectral measurement at position 1,
50 mm downstream of this lobed mixer. The approximate number of
structures counted in the PFV plot corresponds with the frequency of
occurrence of these structures as determined from the spectrum to be
approximately 700 Hz.

This method was also applied by Delville et al [11] to a study of
the structures in a turbulent, plane mixing layer. From the instanta-
neous velocity profiles, detailed structures were observed in both the
transverse and spanwise directions. They were then able to utilize an
edge extraction scheme to find an intermittency function which corre-
sponded to the passage of the structures. From these results they found
the spanwise to streamwise wave-length ratio to be approximately 0.16.

It should be noted that the structures observed utilizing the PFV
technique in both experiments would be much more difficult (if not
impossible) to infer from real flow visualization techniques due to tur-
bulent diffusion effects at the relatively high speeds used in this study.
The Ukeiley et al [43] study demonstrates that the hot-wire rake based
PFV technique provides a simple and effective means for determining
how well devices such as the lobed mixer perform, and that it poten-
tially has many applications in industry. The limitations of the PFV
technique in its present form are spatial aliasing (discussed later) and
its inability to capture 3-D instantaneous structure.

2.3 Stochastic Estimation

One of the more popular ideas in experimental turbulence at present
is that of stochastic estimation which provides a means for quantifying
large scale structures in turbulent flows (v. Adrian and Moin [2] and
references therein). In brief, stochastic estimation uses knowledge of
a field at one or more points together with its statistical properties to
infer its ‘typical’ behavior at other locations. Only Linear Stochastic
Estimation (LSE) will be discussed here since Tung and Adrian [41]
have shown that little is to be gained by going to second order or
higher. Application of this technique requires knowledge of the two-
point correlation tensor which can be obtained with only two probes.
The conditional eddy can be estimated using various averaged quanti-
ties (for example, the Reynolds stress) to provide the condition. The
use of rakes of probes, however, provides many more possibilities for es-
timating the simultaneous velocity vector field using the instantaneous
velocities at one or more points across the span.
A conditional average can be defined as

< g(u)|E >= expected wvalue of g(u) 1)

given that the event E, the detector of the coherent structure, oc-
curs. It should be noted that the overbar denotes an average here and
throughout the paper. However, since the properties of these coherent
structures are not known beforehand it is difficult to determine reli-
able unambiguous and unbiased detector events. Adrian [1] suggested

choosing
g(u) = u(z') (2)



and
E=c<u(z)<c+dc (3)

which confines the velocity vector to a small window between ¢ and
¢+ dc where c is any arbitrary vector. Symbolically

i(z") =< u(a)|u(z) > (4)
which can be approximated, for the linear estimate, as
ii(z") = Aiju;(z). (5)

Values for the coefficients, A;;, are chosen such that the mean square
error is minimized as

e; =< [t (z")— < ui(z)|u(z) >)* > (6)
for 4 = 1,2, 3. This minimization requires that
8@1-
=0 7
Ay (7)
which leads to an equation of the form
< uj(z)ug(z) > Air =< uj(z)u;(z') > (8)

where < u;(x)ur(z) > is the Reynolds stress tensor and < w;(z)u;(z') >
is the two-point correlation tensor.

These ideas can be illustrated using the recent application of LSE
to the axisymmetric jet mixing layer by Cole et al [9],[10]. This work
differs from previous studies in that the instantaneous velocities at
more than one position across the jet shear layer provided the events.
The simultaneous velocity and two point correlation tensor data of
Glauser and George [19] were utilized for this application. In their high
Reynolds number experiment (Re = 100000), 8 cross wires, spanning
radially across the jet mixing layer at /D = 3, were used to simul-
taneously measure the streamwise and radial velocity. The rakes were
constructed on printed circuit boards similar in design to those used by
Nagib and his colleagues at IIT and are described in Glauser [21].

Expanding equation (8) results in the following system of equations
for the u, v data of Glauser and George [19]

First System:

<u?l> <uwv> An < uu' >

<vu> <vE> A < uv' >
Second System:

<ul> <uv> Ay <vu' >

<vu> <vE> Ay <o >

The estimated velocity components are now obtained by expanding
equation (5) which results in

o= Aj1u+ Aav
U = Asru + Ao

After applying this technique to the data of Glauser and George [19],
the matrices that arise for a single wire estimate are



First System:

< U%e‘f > < u'refvref > Allw < UTefuw >

< UpefUpef > < Uzef > Aty < UpefUy >
Second System:

< u%ef > < UrefUref > Allw < UrefUy >

< Vpeflref > < U?"ef > Az < VpefUy >

where ref is the reference wire number and w is the wire number (i.e.,
1 - 8 in this case).
For a two wire estimate these matrices become:

First System:

<Ulepy > <UnefiVrefs > < Unefrlinefy > < Urefirepy > Affl

< UrefUrefy > < vgefl > < UrefylUrefy > < UrefyUrefy > A;;Q
Slrefylinefy > <UrefrUrefy > <Upepy, > <Unefprepy > Ajfh2
2
< vrefg > A;;{?

< Urefallref; > < UrefaUrefir > < Urefalrefs >

Second System:

< u? > < UrefyVUrefy > < UrefiUrefs > < UrefiVrefs > A;;J:;I

ref1

< Upefyliref, > <ol > < Upefylrefy > < UpefyUrefy > Apel!
< Upefoliref; > < UpefaUref; > <ulg, > < UpefyUrey > ALH2

SUrefalirefs > < UrefaUrefy > < Urefalirefs > <Vl > Al

where ref; and refs, are reference wires 1 and 2 respectively. The
estimates for the two wire reference case are then

Uy = Aﬁ{ul Uref; + Ag{ul Uref; + Aﬁ{uz Urefy + AIS{fvrefz 9)
and

~ AT€f1 A?‘6f1 A?‘6f2 Arefz 10

Vw = Agyy Urefy t Agoyy Urefs  Aary Urefa T Azzy Urefa- (10)

Without much trouble this system can easily be expanded to include
estimates of all 8 wires. An obvious property of the 8 wire estimate
is that the estimated velocities will be exactly the same as the actual
velocities.

Cole et al [9], [10] have estimated the velocity field using various
references positions for both single and multi-point estimates. A time
record of the original velocity vectors at the 8 radial positions across
the jet shear layer at /D = 3 is shown plotted in figure ??. Fig-
ures 7?7, 2?7 and ??7 show the single point estimated fields using wires
3,4 and 5 respectively as reference. These were constructed using the
single point versions of equations 9 and 10. Note the large differences
between each of these conditional estimates and how they differ from
the original vector field. It is clear that a one point reconstruction
does not do an adequate job of estimating the entire flow. However,
the conditional estimates obtained using wires located just off either
side of the centerline of the shear layer do a reasonable job in recon-
structing the other wires located on the same side, but capture very
little from the opposite side of the shear layer.

Since the one point conditional estimates clearly bias the eddy de-
tected, multi-point estimates were used by Cole et al. [9],[10] to try

< Upefy Uw >
< Upefy Uw >
< Upefollw >
< UrefoUw >

< Upefy Vw >
< Urefy Vw >
< UpefaUyw >
< UrefoUw >



and capture a more representative instantaneous conditional eddy. Fig-
ures 7?7 and ?? show estimates obtained using reference wires 3 and 5
and wires 3,4 and 5 respectively. These were constructed using equa-
tions 9 and 10 for the two wire estimates and a three wire version for
the three wire estimates. Note how much better these results com-
pare to one another and to the original random velocity field shown in
figure ??. From these results the authors conclude that a two point
reconstruction (specifically wires 3 & 5) does an adequate job in re-
constructing the entire flow and little is gained by going to a 3 point
estimate. They also demonstrate that for computing conditional av-
erages, the number and proper placement of the references probes is
critical.

2.4 Proper Orthogonal Decomposition

Another popular idea at present for characterizing flow structures in
turbulence is the so-called proper orthogonal decomposition (POD).
Like stochastic estimation, the POD requires knowledge of the two-
point correlation tensor. This be can be obtained from two point mea-
surements alone, so that if one is only interested in reconstructing av-
eraged quantities such as spectra then the two point measurements are
sufficient. If, however, the full power of the POD is to be exploited to
reconstruct the instantaneous decomposed velocity fields, then rakes of
hot-wires must be used. As will be shown later, this latter possibil-
ity presents opportunities for using the PFV technique to visualize the
results of the POD.

The POD results from the search for a deterministic field which
has the largest mean-square projection on the velocity field (i.e. the
structure which maximizes the energy, v. Lumley [29]). Maximizing
the mean-square projection, leads to the following integral eigenvalue
problem

/ / / / Ryj(#,& 1, (@, t)dFdt’ = X\ g™ (z,1).  (11)

The kernel of equation 11 is the two-point velocity cross-correlation
tensor, R;;(Z,7,t,t') =< w;(Z,t)u;(&',t') >, and the summation of
the eigenvalues is equal to the total energy. The integral equation
has an infinite number of orthogonal solutions which can be used to
reconstruct the original random velocity by the following equation

(@0 =3 and™ (@1), (12
n=1

where the coefficients, a,,, are random and uncorrelated, and must be
determined for each realizaion of the flow by projecting the eigenfunc-
tions on it.

If a direction (or time) is assumed to be statistically stationary, ho-
mogeneous or periodic, the POD reduces to the more familiar harmonic
decomposition so that Fourier analysis is used in these directions (v.
George [16]). Assuming the flow to be homogeneous in the streamwise
direction, z, and stationary in time, equation 11 reduces to

/ iz, 7'y, £, k)0 (@' y', £ k) da'dy' =

A (ky, O™ (@, y, £ k), (13)

where  ®;;(z,2',y,y', f,k1) is the Fourier transform  of
R;;(%,&,t,t') in the stationary and homogeneous directions. The ¢’s



are the frequency and wavenumber dependent eigenfunctions and x and
y denote the remaining inhomogeneous directions (see figure 77). Note
that often it is convenient to treat an inhomogeneous, but slowly devel-
oping flow as if it were locally homogeneous in the streamwise direction,
as in the lobed mixer experiment discussed earlier and below.

Simpler decompositions using only some of the variables can also
be used. For example, Ukeiley et al [43] considered the reduced decom-
position given by

/ q’ll(ma 'TI; f) gn)(ml7 f)dwl =
A (g™ (z, f). (14)

where ®1; is the measured one-dimensional spectrum across the flow.
In equation 14, only the spanwise direction, z, is decomposed through
the use of POD. The vertical direction, ¥, is also statistically inhomoge-
neous in this flow, but is not considered in this preliminary examination.
The streamwise velocity component which has been decomposed with
Fourier analysis can be reproduced in Fourier space by

o0

() =Y an(NW(x, 1), (15)

n=1

where the random coefficients a,(f) can be calculated for a single re-
alization of the transformed field by

an(f) = / i (z, )™ (z, f)de. (16)

This equation is derived using a similar process to that of a Fourier
decomposition (i.e., multiplying equation 15 by ¢*, where the * denotes
the complex conjugate, and integrating over the whole region).

The numerical approximation, detailed by Glauser et al [18], sim-
ply consists of replacing the integral in equation 14 by an appropriate
quadrature rule (in this study a trapezoidal rule). ®11(z,z', f) is ob-
tained from experimental measurements and utilized in equation 14 to
obtain the eigenvalues and eigenfunctions. These eigenfunctions are
then utilized to reconstruct the original Fourier transformed random
velocity field. This streamwise velocity component in Fourier space
can then be inverse transformed to obtain the reconstructed instanta-
neous velocity-time trace. It should be noted that the random coef-
ficients could not have been calculated unless rakes of hot-wires were
used. This is because the instantaneous velocity at all points, z, are
needed simultaneously so that the integral in equation 16 can be com-
puted.

Figure ?? illustrates pseudo flow visualization plots of reconstructed
instantaneous signals for various proper orthogonal modes of the lobed
mixer flow as reported by Ukeiley et al [43]. The contribution from the
first eigenmode, displayed in figure ??b, shows a good representation
of the dominant structures shown in figure ??a. The first three eigen-
modes combined capture the global features seen in the pseudo flow
visualization of the total streamwise velocity field as illustrated in fig-
ure ??c¢. The summation of the first five modes, displayed in figure ??d
reproduces the general shape of the original plot at all locations, how-
ever the smaller scales are not completely captured. A summation of
the first seven eigenmodes is needed to obtain a reconstruction which
captures the small scales, as seen by comparing figures ??a and ??e.



The contributions from subsequent modes are negligible. One can ar-
gue from these results that the large scale features of this flow field can
be adequately represented by using the first proper orthogonal mode
alone. These results indicate that a low dimensional dynamical systems
approach may be fruitful for this flow. [4], [20].

3 RESOLUTION REQUIREMENTS

3.1 Overview

This section discusses some of the unique problems encountered in the
interpretation of multi-point measurements. It should be obvious that
the aggregate of the measurements can be no better than each of them
individually. Thus, regardless of whether the data are taken simul-
taneously at many points simply to expedite the collection of single
point data or because additional information is sought on the spatial
characteristics of the field, the spatial, temporal, and dynamic range
requirements for each probe are the same as for single point measuring
techniques. (Reference [17] summarizes these requirements for turbu-
lence measurement.) In brief:

e The dynamic range of the probe, calibration and supporting in-
strumentation must cover the appropriate range of the signals
encountered at each location. Note that what dynamic range is
appropriate is very much a function of what information is to
be sought; generally the greater the dependence on the higher
moments of the signal, the greater the dynamical range required.

e The spatial resolution must be adequate so that the information
removed by the averaging over the measurement area (or probe
volume) is within acceptable limits. Again, what is acceptable
spatial filtering is a function of the dependence of the information
to be gleaned from the signal on the smallest dynamical scales of
the flow. A general guideline is that the largest dimension of the
measurement volume (or area) must be less than about half the
smallest scale which must be resolved.

e The temporal resolution of the probe and supporting instrumen-
tation must be sufficient to capture the highest frequencies (or
transient events) which are of interest. Often these limits are
imposed by the physical principles governing the measurement
device.

Additional constraints on the data acquisition must be imposed if
the data are to be digitized:

e All channels should be sampled simultaneously to avoid intro-
ducing phase errors. This is usually accomplished by sample and
hold amplifiers on each channel. Alternatively, in some situations
the phase differences are irrelevant for the intended purpose of
the data, or can be corrected for after transformation to Fourier
space.

e The resolution of the A/D converter must be sufficient to mini-
mize the quantization noise to acceptable levels, what is accept-
able depending on the information to be sought.

e The sampling rate of the A /D must be adequate to ensure that the
sampled data can faithfully reproduce the desired information.

10



These last three criteria defy general guidelines because they are so
strongly dependent on what information is desired from the recorded
data. Quantization noise is generally white in character, and thus most
adversely affects those quantities which are dependent on the lowest
spectral levels of a signal. This most commonly occurs in turbulence at
the highest frequencies (since the turbulence spectra drop off rapidly
there), and can cause serious errors in any measurement which depends
on the dissipative scales of the flow.

Sampling rate criteria are probably the most familiar of all the ex-
periment design considerations, but also the most often misapplied. If
(and only if!) it is important to retain the spectral character of the
signal in the recorded data (as opposed to simply amplitude informa-
tion), then the data must be sampled at a rate greater than twice that
of the highest frequency present in the signal to avoid aliasing infor-
mation from one frequency to another. This is the familiar Nyquist
criterion and will be seen to have its counterpart in the spatial consid-
erations discussed below. However, if the desired information can only
be obtained by reconstructing the instantaneous signal from the digital
data (as in many conditional sampling experiments), then the required
sampling rate may be as much as 5 — 10 times higher than the Nyquist
criterion would indicate. This is because the reconstruction is carried
out for a finite record length signal for which the Whitaker interpolation
formula does not apply [39], and usually by less efficient reconstruction
algorithms. On the other hand, there are many questions which can
be asked about the data (like what are its statistical moments?) where
aliasing is not a problem, and sampling rates substantially lower than
the Nyquist rate can and should be used [15], [39].

Finally, there are two additional considerations which affect the
length of record and the quantity of data, the first applying to spectral
estimation (or other processes related to it) and the second to all es-
timates of randomly varying data. The latter in essence requires that
sufficient independent estimates of any statistical quantity are avail-
able to ensure statistical convergence. The former has nothing to do
with statistical considerations but arises from the fact that the Fourier
transform of a finite record of a signal is actually the convolution of
the signal transform with the transform of the record “window”. If
the record length is not much longer than the longest time scale of the
signal, the “spectral leakage” due to the window will adversely affect
the spectral character of the recorded signal. This can, of course, affect
any inference from the data which depends on its spectral character.
Both of these have been discussed in some detail in many places, v.
[39], [15].

In order to exploit the full potential of multi-point measurement
techniques for the exploration of the spatial (or spatial and temporal)
character of the instantaneous fields, there are additional considerations
which must be applied to the design of the spatial arrays. It will be
assumed hereafter that all of the concerns addressed above for single
point measurements have been satisfied, and attention will hereafter be
focussed on the unique aspects of multi-point experimental design.

3.2 Periodic and Homogeneous Fields

Spatial resolution requirements for periodic or statistically homoge-
neous fields are most naturally discussed in terms of a Fourier decom-
position which can be shown to provide an optimal representation [16].
It must be noted that it matters not whether or not it is the intent
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of the experimenter to spatially Fourier decompose the results of the
measurements. Any attempt to reconstruct the field or to analyze the
measurements by techniques which depend on spatial variations within
it depends implicitly on the Fourier coefficients which constitute it.
Thus the multi-point measurements must be performed with sufficient
spatial resolution and extent to faithfully capture them.

For periodic fields, the appropriate eigenfunctions are given by exp(—imé)
where m = £1,2,--- and the corresponding Fourier coefficients by

1 2w

u(@)e ™0 dg (17)

aAm = —
2w 0

From these, the field can be reconstructed using

u(@) = i ame'™? (18)

m=—0o0

The number of Fourier modes which can be obtained is, in practice,
limited to half the number of points at which the measurements are
taken plus one. (The factor of a half is because the Fourier coefficients
are complex; the extra coefficient is m = 0 which is computed from the
average of all the data points.) This is exactly the spatial counterpart
of the representation of digitally sampled periodic signals by Fourier
Series.

For statistically homogeneous fields, a Fourier decomposition is also
appropriate, except that the mode number, m, is replaced by the wavenum-
ber, k, which can take any value on the interval (—oo, +00). Because the
field is (by definition) of infinite extent, the Fourier coefficient becomes
the Fourier transform given by

a(k) = / u(z)e"*2dy (19)
The reconstructed field is now given by
u(w) = / a(k)ei* dk (20)

From an experimental point-of-view, the difference between the Fourier
series and the Fourier transform vanishes since the measurement field is
always of finite extent and the number of measurements is finite. The
finite extent limits the lowest (or fundamental) wavenumber to 27 /L
where L is the extent of the measurements, while the finite number of
measurement locations restricts the number of independent Fourier co-
efficients to half the number of measurement points. These are usually
evaluated at integer multiples of the fundamental. This is, of course,
exactly analogous to the Fourier decomposition of statistically station-
ary temporally varying signals.

A consequence of discretely sampling the signal in space is that (like
its counterpart in time series analysis) the information at one mode (or
wavenumber) can be aliased into lower modes. This is most easily
demonstrated for samples taken at equally spaced distance intervals.
Suppose M modes are required to represent the signal and only N modes
can be computed (from 2N measurement locations). Then when M >
N, the information in the m!* mode for m > N (but less than 2N)
appears in the calculated (m — N)** mode. If m > 2N (but less than
3N) it is aliased to the (m — 2N)™ mode, and so forth. Tt is important
to note that once the data is aliased, there is no way to unaliase it and
the modal composition of the original signal is irretrievable.
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If the spectral content (mean square Fourier coefficients) of the sig-
nal is varying monotonically and dropping rapidly as the mode number
increases, the effects of aliasing may be negligible. This is often the
case when measuring one-dimensional turbulence spectra (usually in-
ferred from temporal spectra) which always have significant spectral
content at very low wavenumber and often peak there. On the other
hand, modal analysis of spatially sampled data can and often does lead
to situations where the spectral content of the lowest modes can be
small compared to that of the higher modes. When this occurs, even
a relatively high number of resolved modes (compared to that of the
peak) can lead to significant aliasing of the lowest modes.

Figure ?? from ref. [22] shows a modal decomposition of the mixing
layer of an axisymmetric jet using 30 and 48 positions around the cir-
cle. Note the apparent modal content in the first few modes of the 30
position data which is reduced when the circle is resolved by 48 posi-
tions. It can be shown by arguing that the spectra fall off smoothly at
the higher modes (in fact as m~>/3) that the low mode number peak is
largely due to aliasing. This is substantiated by the Nyquist diagram
of figure ?7? for the 30 position case which shows where the information
above mode 16 is aliased. Clearly the physical processes inferred from
the aliased data would be quite different from those actually present.

Aliasing in temporal data analysis can be minimized (and some-
times avoided entirely) by low-pass filtering before digitizing to re-
move the Fourier content at frequencies above half the sampling rate.
The counterpart for spatial sampling would be spatial low-pass filter-
ing. The concept if primitively applied would necessitate using many
probes closely enough spaced to allow resolution of all the modes, then
smoothing adjacent probe data samples to remove the highest modes
or wavenumbers. This is not possible in most applications because of
practical limitations on the number of probes and how closely they can
be spaced. As a consequence, most experiments to-date have simply
ignored the aliasing problem and hoped it wasn’t there, sometimes with
very misleading results!

Ironically, the spatial aliasing problem can be addressed in a straight-
forward manner by exploiting to advantage one of the principal limi-
tations on single-point measurements, namely the unavoidable spatial
filtering arising from the finite spatial extent of the probe. By making
the probe dimensions large enough to span the distance between the
measurement, sites, the resulting spatial filtering removes the Fourier
content of the modes which would have otherwise been aliased. Note
that an analogous type of temporal filtering was implemented before the
advent of modern high capture rate A/D converters by averaging the
signal across the entire interval between sample times (Kristensen [25]).

A less satisfactory alternative than direct spatial filtering is to utilize
the interrelation of spatial and temporal disturbances in many fields,
especially turbulence. The temporal fluctuations in a convected spa-
tial field are only in part due to the unsteadiness in the field (9/0t),
the remaining part arising from the spatial variations in the field be-
ing swept by the probe (U.0/0z) where U, is the effective convection
velocity. If the turbulence intensity is low, the convected spatial distur-
bances can dominate the unsteady signal. When this happens, there
is a correlation between the frequency of the disturbance seen by the
probe, say f, and the size of the disturbance, say A. Thus it is possible
to remove at least a portion of the spatial information smaller than
a given wavelength, say A,, by temporally low-pass filtering the data
above f, = U,/ A.
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The finite extent of the measurement field imposes a spatial window
on the data exactly as does the finite length of record in time. If the
measurements are performed between (—L/2, L/2) the spectral window

sin(wkL)

W(k)=L T

is convolved with the measurements. While this does not cause any
change in the validity of the data itself (i.e., each individual data point),
it does adversely affect the determination of which Fourier coefficients
comprise it. The problem is exactly analogous to the window problems
resulting from the finite record length of temporal signals. In general,
the smaller the spatial extent of the measurements relative to the scale
of the disturbances containing the energy and the more rapidly the
spectrum falls off with wavenumber, the greater the adverse effects of
the resulting spectral leakage. Note that if the spectrum peaks away
from the origin, the leakage can be in both directions away from the
peak. This is, of course, not a problem for periodic fields (like those
which have axial symmetry) as long as the entire field is considered, but
it is a problem for homogeneous or locally homogeneous fields where
only a portion of the field can be considered.

(21)

3.3 Inhomogeneous Fields

The establishment of criteria to govern the spatial sampling of inhomo-
geneous fields is of great importance because most engineering flows are
strongly inhomogeneous in one or more directions. As for the homoge-
neous or periodic flows discussed above, the problem of deciding how
many probes, where they should be placed, what their spacing should
be, and how much of the flow they should span is obviously crucial
to the successful inference of flow structure from the measurements.
These questions represent a substantial challenge, in part because, un-
like homogeneous or periodic flows, there is no convenient and general
counterpart to the analytical Fourier modes from which the conclu-
sions of the previous sections were drawn. Clearly, ideas like aliasing
and spectral leakage must have there counterpart in the sampling of in-
homogeneous fields as well, even though they are not well-represented
by Fourier modes.

In order to quantify the problems, it is necessary either to choose
particular fields or to select a means of representing a variety of them.
The proper orthogonal decomposition discussed in Section 2.3 is a nat-
ural candidate for this discussion, both because it is a general method
applicable to all inhomogeneous flows (it reduces to the Fourier de-
composition for homogeneous or periodic flows), and because it is of
interest in its own right (as evidenced by the activities discussed ear-
lier). Whether one is interested in the POD or not, because it provides
an optimal representation of the flow (in terms of capturing its energy
with the fewest number of terms) it is hard to imagine that any other
way of looking at the spatial characteristics of the field would have less
stringent requirements.

For the purpose of this discussion, attention will be focussed on the
one-dimensional decomposition posed by

[ B @) = ag (@) (22)

where ¢" is the nt" eigenfunction, ), is the corresponding eigenvector,
and R(x,z") is the two-point correlation. given by

R(z,z') =< u(x)u(z') > (23)
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For real fields, both the eigenvalues and eigenfunctions are real, and the
latter are orthogonal and can be chosen to be orthonormal. The de-
composition is optimal in that the lowest order eigenvalue is the largest,
the next one is next largest, and so forth, so that the representation
requires the fewest number of terms of any decomposition to represent
the field.

A random field can be reconstructed from the eigenfunctions using

u(z) =Y ang" () (24)

where the coefficients, a,, are random, in general, and satisfy
< Gnplm >= ApOmn- (25)

For a single realization of the random field, the coefficients are given
by

ap = /  u(@)g" (@)da. (26)

It is easy to show that the two-point correlation can be recovered by
R(z,z') =) Mad"(2)¢" (a) (27)
i=1

If the objective of the multi-point measurements is to determine the
eigenfunctions and eigenvalues from experimentally determined values
of the two-point correlati on, R(z,z'), then the problem reduces to
obtaining data which are sufficient to solve numerically the integral of
equation 22. The accurate determination of R(x,z') is, of course, also
a problem, but of the type discussed in Section 3.1. The problem of
interest here is the measurement grid: How many points are required
and where should they be located? While the Nyquist and window
criteria of the preceding section would certainly be adequate (since the
field can be expanded in Fourier modes, although less optimally), there
are probably substantially less stringent requirements which will suf-
fice. There is really very little work which has been done to determine
what these criteria might be, and experimenters have largely relied on
intuition and empirical tests. The following paragraphs attempt to
summarize current understanding and set forth at least the beginnings
of a sampling theory for inhomogeneous flows. The two questions of
quantity and location will be considered separately beginning with the
former.

It is obvious that the number of measurement locations in any ex-
periment must be finite. Therefore the integral equation of equation 22
must be approximated by the matrix equation

Rij0; = A; (28)

The subscripts, 4,7 = 1,---, N represent the measurement points, and
R;; represents the correlation computed at pairs of these locations; i.e.

Rij =< wuzu; > (29)

(Note that in practice R;; is replaced by a more complicated matrix
using appropriate weighting factors to assure that it is symmetric [18].)
The techniques for solving this equivalent matrix eigenvalue problem
are well-documented in many places (v. references [18] and [32] for par-
ticularly relevant discussions). Of primary importance here is the fact
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that at most N linearly independent solutions exist corresponding to
the N eigenvalues. Thus the number of measurement locations deter-
mines the maximum number of eigenfunctions which can be obtained.
To see how many measurement locations are required it is useful to hy-
pothesize that a field is mode-limited, which is defined to mean that all
modes above a given number, say M, are identically zero. It is obvious
from the above that the field can be properly resolved only if N > M.
If N > M , then the first M eigenvalues necessary to specify the field
will be determined and the extra N — M eigenvalues will be zero. On
the other hand, if N < M, the eigenvalues determined will not corre-
spond uniquely to those of the original field, but will have additional
information from those eigenvalues for M > N “leaked” into them.
This can most easily be demonstrated by attempting to determine a
3-mode field using only 2 locations. The two eigenvalues which can
be determined are functions of all three eigenvalues actually present.
Figure ?? from Glauser and George [22] shows different results for a
jet mixing layer using 7 and 13 wire configurations. The differences are
in part due to the aliasing of unresolved modes in the 7 wire case, and
in part from the better approximation to the integral of equation 22
for the 13 wire case.

Lumley [30] argues that the number of terms required to capture
most of the energy is proportional to the spatial extent of the inho-
mogeneity divided by the integral scale of the field, i.e. L/I. In the
Glauser/George experiment, this number is about 3-5, and corresponds
closely to the number of terms which proved to be significant in their
experiment. For boundary layer flows, the integral scale is a strong
function of distance from the wall in the near wall region. Thus, if
the entire flow domain is utilized, the number of required terms can be
quite large as discussed below. On the other hand, subdomains can be
utilized to reduce the domain — one eliminating the near wall region
where the integral scale is small, and another including only the near
wall region so that the domain is small. The result is that the required
number of terms is smaller for each subdomain. Note that while this
works for the capturing of the turbulence energy, it does not imply that
the higher terms may not be important for other kinds of processing
like conditional sampling.

The discussion above can be illustrated by the results of Chambers
et al. [8] and Moin and Moser [32] who used numerical simulations
to study how the domain over which the integral is computed affects
the resulting eigenvalues. For the boundary layer type flows they in-
vestigated, integration over the entire domain yielded a substantially
larger number of eigenfunctions than did integration over subdomains
consisting of the near wall region only and a region comprising most
of the flow excluding the near wall region. In both these situations,
the inner-outer character of the flow lends itself naturally to this kind
of splitting of the problem. Presumably a proper interpretation of the
decomposition for each regime would seek influences of one region on
the other, perhaps through the coupling of the pressure field between
them. No such physical reasons are available for splitting the jet mixing
layer flow of Glauser and George [22] where the largest scales dominate
the entire flow. The important message from these results is that re-
gardless of the domain chosen, it will likely influence greatly the modal
character of the reconstructed field, and most probably any inferences
drawn from it.

Usually one can not guarantee that modes above a certain number
are not present unless they are removed by spatial filtering, perhaps of
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the type discussed in the preceding section. In the absence of detailed
knowledge about the eigenfunctions, it is not possible to state precisely
how such filtering should be carried out. It has been noted, however,
by a number of investigators (v. Chambers et al. [8]) and Moin and
Moser [32]) that the higher the mode number, the more closely the
eigenfunctions begin to resemble Fourier modes. Thus, the criteria for
homogeneous (in this case, locally homogeneous) flows provide useful
guidelines.

Even if the number of measurement locations and the spatial extent
of the measurement field are sufficient to satisfy the concerns above,
that alone does not ensure that the eigenvalues and eigenvectors deter-
mined from the matrix equation (equation 28) correspond to those of
the original integral equation (equation 22). The most difficult ques-
tion of all is to determine in advance (without already knowing the
eigenfunctions) where the measurements should be taken to ensure the
best (or even an adequate) approximation to the real integral eigen-
value problem of equation 22. Certainly it would seem reasonable to
concentrate the measurement grid in regions where the kernel, R(z,z'),
is changing most rapidly, if care is taken to weight the matrix elements
S0 as to not artificially redistribute the energy. This is the same kind of
logic that lies behind the logarithmic spacing often used in boundary
layer studies.

Some further insight into where the measurement points should
be located (as well as some justification for the qualitative argument
above) can be obtained by examining Lumley’s [30] method of calcu-
lation by successive approximation where the (n + 1)* approximation,
say ("1 is related to the ntt, (™ approximation by

/ R(z,2")y™ (2')da’ = "+ (30)
region
where the first eigenvalue is obtained from

T s (31)

and the first eigenfunction from

B /A o b / b1 0" dz (32)

region

If the first “guess” is taken as ¢) = 1, then it is easy to see that the
measurement locations must be chosen so that the integral of R(z,z’)
over z' is correctly computed. There is no reason, in general, to be-
lieve that the best choice of locations for estimating the eigenvalues at
one value of z will be the best for all. In view of this and in the ab-
sence of other information, a uniformly spaced grid might be the best
compromise. Also, in the absence of more specific criteria, the current
approach of halving (or doubling) the resolution to see how the eigen-
values change is perhaps the only way to confirm that the choices of
grid are correct.

While the considerations above may ensure the correct behavior of
the lowest modes, the higher modes may still present problems. This
can also be seen from Lumley’s method where the (n + 1)!* mode is
calculated from the kernel minus its reconstruction from the first n-
modes; i.e.,

[ RGw) = 3o Mk @)k @ @)ds’ = o @) (9
region k=1
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It is obvious that the higher the mode number to be calculated, the
more it depends on the cumulative errors in the lower modes. These
conclusions do not depend on the method of successive approximations,
but are general in that the errors will be most pronounced in the higher
modes.

4 SUMMARY AND CONCLUSIONS

Simultaneous multi-point measurements have been shown (both here
and elsewhere) to provide unique tools for aiding in the understand-
ing of turbulence structure in ways not otherwise possible with sin-
gle point measurements. Several examples have been briefly reviewed
which demonstrate how such measurements have helped shed new light
on the turbulence structure in wakes, jets, free shear layers, channel
flow and boundary layers. The interpretation of the data obtained with
the rakes has been enhanced by using conditional averages, pseudo-flow
visualization, stochastic estimation and the proper orthogonal decom-
position.

The problem of multi-point measurements has been shown to be
much greater than simply designing and building impressive arrays of
probes which do not by their presence change the flow. An attempt
has been made to make clear that there are a number of serious ques-
tions which must be addressed before spatially sampled data can be
used to infer spatial and temporal structure in the flow. An obvious
constraint that must be met is that spatial, temporal and dynamic
range requirements for each probe on the rake are the same as for sin-
gle point measuring techniques. In order to exploit the full potential
of multi-point techniques for extraction of the spatial character of the
instantaneous fields, however, there are additional considerations which
must be applied to their design. With the aid of Fourier analysis for
periodic and statistically homogeneous fields, spatial aliasing and spec-
tral windowing are shown to be concerns that must be dealt with, just
as they are in digitial time series analysis. An idea is proposed for spa-
tial low-pass filtering which involves exploiting to advantage the spatial
filtering arising from the finite spatial extent of the probe. An attempt
has also been made, using the proper orthogonal decomposition, to
establish criteria which govern the spatial sampling of inhomogeneous
fields since ideas like aliasing and spectral leakage have their counter
part here as well. It is argued that the criteria established for homoge-
neous fields would certainly be adequate for inhomogeneous fields but
these are probably more stringent than actually required.

It has been noted that Fourier techniques and the proper orthogonal
decomposition were used both to establish general sampling criteria and
because they are of interest in their own right. Thus, even if it is not the
intent of the experimenter to utilize these techniques to decompose the
measurements, multi-point measurements must still be performed over
a sufficient span and with sufficient spatial resolution (or appropriate
spatial low-pass filtering applied) so as to avoid spatial aliasing and
windowing effects. This is especially true when inferences are to be
drawn from gradients computed from the instantaneous signals (e.g.
vorticity).

Although the ideas discussed here have been developed for turbu-
lent velocity fields, the advantages of multi-point measurements are
obvious for other variables such as pressure and temperature and the
various kinds of flow situations in which they occur. While the exam-
ples used herein have been entirely drawn from experiments using rakes
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of hot-wires, the techniques used to analyze the measurements and the
resolution criteria governing them are applicable to all types of trans-
ducers. With the rapid advancement of modern optical techniques for
flow measurement, there is good reason to believe that multi-point mea-
surement techniques will find increasing application in both scientific
and engineering investigations. If care is taken to address the concerns
expressed above, the increased physical insight and understanding re-
sulting from them should be substantial.
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