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1 Introduction

There are few problems in turbulence which are more generally regarded as
solved than the scaling laws for the zero pressure gradient boundary layer. The
analysis of Millikan [?] which matched inner and outer scaling laws (the Law
of the Wall and the Velocity Deficit Law) to obtain logarithmic velocity and
friction laws is widely considered to be classical. The acceptance of Millikan’s
arguments was facilitated by the success of Clauser [?], Hama [?], Coles [?]
and others in extending Millikan’s arguments to boundary layers with pressure
gradients, roughness and compressibility. Equally important was the apparent
agreement of experimental data with the theoretical results.

That there have been few dissenters ! is somewhat surprising in view of some
of the unsatisfying features of the Millikan theory. Among them:

1. The velocity profile disappears in the limit of infinite Reynolds number
(ie., U/U, = 1);

2. The outer length scale is not proportional to an integral length scale, and
in fact blows up relative to them as the Reynolds number becomes infinite
(i.e., 6/« and §/6 — o0); and

3. The shape factor approaches unity in the infinite Reynolds number limit
(ie., H=6"/0 > 1).

IPerhaps the editor’s note to the paper of Long and Chen [?] gives a clue that dissent has
simply been suppressed by not publishing it.



In addition, because of the analytical problems presented by the logarithms, only
empirical models are possible for the streamwise development of the boundary
layer parameters.

In spite of the fact that no shape factors below about 1.25 have been re-
ported, and that boundary layers profiles seem to collapse as well with momen-
tum and displacement thicknesses as with the boundary layer thickness deter-
mined from the profile (e.g., do.99), it has somehow been possible to live with
these ‘problems’. Clauser [?] and Tennekes and Lumley [?], for example, use the
displacement thickness as the outer length scale in the analysis of equilibrium
boundary layers, even though its use is inconsistent with the Millikan analysis
(see iii above). Acceptance of these ambiguities can in part be understood be-
cause of the relatively limited range of Reynolds numbers at which experiments
have been performed, but in larger part it probably should be attributed to the
absence of rational alternative theories.

This paper reconsiders the fundamental basis of Millikan’s analysis. It ex-
amines the consequences of an alternative formulation of the outer scaling law
which when matched to the Law of the Wall leads to velocity and friction laws
which are power laws. Moreover, the new theory removes some of the trou-
bling aspects of the earlier theory; in particular, the outer length scale can
be identified with either the momentum or the displacement thickness, and the
asymptotic shape factor is greater than unity. Extensions of the theory proposed
here to boundary layers with pressure gradients, roughness and compressibility
will be reported in subsequent publications.

Part 1
Theoretical Considerations

2 Governing Equations and Boundary Condi-
tions

The equations of motion and boundary conditions appropriate to a zero- pres-
sure gradient turbulent boundary layer at high Reynolds number are well-known

to be given by
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where U - Uy asy o0 and U =0 at y = 0.

The presence of the no-slip condition precludes the possibility of fully self-
preserving solutions, and so locally self-preserving solutions are sought which
asymptotically (at infinite Reynolds number) satisfy the following outer and
inner equations and boundary conditions:



e Outer Region (Infinite Reynolds Number)
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where U — Uy, as y — 0.
o Inner (or near wall) region (Infinite Reynolds Number)
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where U — 0 at y = 0.

Equation 3 for the inner region can be integrated directly to obtain

—<uv>+u6—U:T—WEuf (4)
dy p
where 7y is the wall shear stress and wu, is the corresponding friction velocity
defined from it. It is clear that in the limit of infinite Reynolds number (but
only in this limit) that the total stress is constant across the inner layer, and
hence its name “the Constant Stress Layer”.

It should be noted that the appearance of u, in equation 4 does not imply
that the wall shear stress is an independent parameter (like v or Uy,). It enters
the problem only because it measures the forcing of the inner flow by the outer,
or alternatively, it can be viewed as measuring the retarding effect of the inner
flow on the outer. Thus u, is a dependent parameter which must be determined
by matching the solutions to the inner and outer equations.

It is also interesting to note that the important feature of the inner layer is
that it occurs only because of the necessity of including viscosity in the problem
so that the no-slip condition can be met. The outer layer, on the other hand, is
dominated by inertia and the effects of viscosity enter only through the matching
to the inner layer. In view of these characteristics it would seem reasonable to
expect that a matched or overlap layer between the inner and outer layers should
include both viscosity and inertia effects, and not be independent of either. Long
and Chen [?] have used this observation to argue that the matched layer cannot
depend on u, and y alone as argued in the usual analyses (eg. Tennekes and
Lumley [?], Millikan [?], von Karman [?]). This question will be addressed later
when comparing the theory proposed below to these classical analyses.

3 The Velocity and Reynolds Stress Profiles

Solutions to the governing equations are sought which depend only on the
streamwise coordinate through a local length scale §(x). Thus, for the mean

velocity
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It has been previously noted that u, cannot be viewed as an independent
parameter since it is determined once Uy, v and z (or §) are given. This de-
pendence can be expressed from dimensional considerations as a friction law
by
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Application of the Buckingham Pi theorem to the velocity itself yields a

number of possibilities, all of which describe the variation of the velocity across
the entire boundary layer. Among them are:
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Note that since u./Us and u.d/v are related by equation 6, either can be re-
tained (and the other omitted) in equations 8 — ?? with no loss of information.
2
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In the limit as u,6/v — 0o (or u./Us — 0), equation 8 becomes asymptot-
ically independent of § and Uy, and thus can at most describe a limited region
very close to the wall, i.e.,

U [ my

This is, of course, the familiar Law of the Wall expressed in inner variables as
originally proposed by Prandtl [?].

A similar limiting argument for F5> and F3 yields two quite different candi-
dates for an outer profile; namely,

U-U

=P () (12)
and
U-U,

— =B (5)

(13)

2This fact seems to have escaped Monin and Yaglom [?] who dismiss a separate dependence
on ux /Us only on experimental grounds.



The second form given by equation 13 is the traditional choice (originally
used by Stanton [?] for pipe flows and adopted by von Karman [?] to the
boundary layer. When matched with the inner layer it leads to the familiar
logarithmic profiles for the matched layer (Millikan [?]). The first form has only
been fleetingly considered by the fluid dynamics community, and discarded in
favor of the second alternative. Millikan, for example, appears to have consid-
ered it briefly, noted that it leads to self-preserving power law solutions of the
outer equations, and then dismissed these solutions as interpolation formulas.
Clauser [?] (see also Hinze [?]) plotted only the highest and lowest Reynolds
number data of Schultz-Grunow [?] in deficit form as in equation 12, and con-
cluded tha the collapse was not as satisfactory as that obtained using the deficit
form of equation 13. There is no evidence that either of these arguments has
been refuted, or even questioned, before now. Thus, up until now, the formula-
tion of equation 13 for the outer deficit, and the logarithmic profiles it leads to,
have been accepted without question.

The question as to whether the data preclude the outer form of equation 12
can best be addressed by examining it. Figure (1) shows the data of Schultz-
Grunow ?? in inner variables corresponding to equation 11. Note particularly
the collapse near the wall, and that the point of departure from this single
”asymptotic” curve moves away from the wall as the Reynolds number increases.
This is, of course, the expected result for an ‘inner’ scaling law. The opposite
behavior appears in Figure 2 which plots the same data in the outer variables of
equation 12. Here the collapse is excellent far away from the wall at all Reynolds
numbers, and the point of departure from the ”asymptote” moves closer to the
wall with increasing Reynolds numbers. This is again the expected behavior
for an asymptotic outer solution. (Note that Hinze [?] like Clauser [?] before
him plotted only the highest and lowest Reynolds numbers, hence the different
interpretation). Finally consider the data plotted in the usual outer variables as
shown in Figure (3). Unlike the above, the collapse is reasonable at all distances
from the wall. Absent almost completely is the expected splitting off with in-
creasing Reynolds number exhibited by both the above plots. While the quality
of the collapse of Figure (3) is striking, ? it is not consistent with the nature
of inner and outer scaling laws. Thus, contrary to previous interpretations, the
data would seem to indicate a preference for the alternate formulation of the
velocity deficit law (equation 12), at least from this perspective.

In view of the above, it is useful to examine whether and why w, should
be a scaling parameter for the outer flow at all, since it is in fact evaluated
at the wall. First note that it is only in the limit of infinite Reynolds number
where the inner layer is truly a constant stress layer. Thus, only in this limit is
the shear stress experienced by the outer flow exactly measured by u2. At all
finite Reynolds numbers it only approximately measures the effect of the inner

3The reasons for this good collapse may be due to the moderate range of Reynolds numbers
of the data, and the mixed (inner and outer) nature of the variables used.



layer on the outer, While the use of u. as an outer scaling parameter may give
reasonable results over a rather large range of Reynolds numbers, it can not
be an appropriate choice for the cornerstone of an asymptotic analysis of the
outer boundary layer. This can be contrasted with fully-developed turbulent
pipe or channel flow where overall balance between pressure and viscous forces
on a section of the flow dictate that the outer flow scale with w,. (The channel
flow is discussed in more detail in the Appendix.) An obvious consequence
of these observations is that the wall layers of these flows are fundamentally
different from the inner boundary layer, contrary to popular belief (c.f. Monin
and Yaglom citeml).

In the remainder of this paper the consequences of the alternative formula-
tion of the outer profile given by equation 12 will be explored in detail. Before
proceeding, however, the objections to it stated above need to be reexamined.
The observation of Millikan [?] that when the deficit is scaled with U in-
stead of u, leads to full self-preservation appears to result from the assumption
that the scale for the Reynolds stress is equal to the velocity scale squared. As
pointed out by George [?], these kinds of assumptions are rarely justified a priori
in similarity analyses, and certainly cannot be true here, except in the limit of
infinite Reynolds number. More will be said about this later.

4 The Matched Layer: The Traditional View

Millikan [?] matched the ‘inner’ scaling of equation 11 and the ‘outer’ scaling
of equation 13 in the limit of infinite Reynolds number to obtain the familiar
inertial sublayer profiles as

v_1i, (g) +B (14)
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and a friction law given by
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where k, B, and B; are presumed to be universal constants. Note that the last
equation implies that u./Us, — 0 as §/n — oo, or equivalently, ¢; — 0.

By substituting the inner and outer scaling laws into the defining integrals
for the displacement and momentum thicknesses, it follows that

— =An/ 5 (17)
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where A; and As are universal constants which can be evaluated from integrals
of the velocity profile. These relations were first given by Clauser [?], and from
them he deduced that the shape factor is given by the asymptotic relation

6* Cf
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Thus as §/n -+ 0 and ¢y — 0, H — 1.

The underlying assumption of the above matching is that the inner and outer
scaling laws used for the profiles, in fact, have a region of common validity (or
overlap) in the limit as /7 — 0 or u./Usx — 0. Long and Chen [?] have re-
marked that it is strange that the matched layer between one characterized by
inertia and another characterized by viscosity does not depend on both inertia
and viscosity. but only the inertia (hence the term ‘inertial sublayer’, Tennekes
and Lumley [?]). They further suggested that this might be a consequence of
improperly matching two layers which did not overlap. The fact that the lim-
iting ratio of the outer length scale § to both of the commonly used integral
length scales, d, and 6, is infinite lends considerable weight to their concern. In
particular, this implies that from the perspective of the outer flow, the bound-
ary layer does not exist at all in the limit of infinite Reynolds number. If one
imagines approaching this limit along a semi-infinite plate where the boundary
layer continues to grow, the outer length scale increases faster than any dynam-
ically significant integral length. These is particularly troubling since ¢ itself
is unspecified by the theory and can not be related to physically measurable
length scales except through the degenerate expressions above.

5 The Matched Layer: An Revised View

An alternative to the above is to consider matching the ‘inner’ scaling law (equa-
tion 11) with the ‘outer’ scaling law which uses Uy instead of u. (equation 12).
If it is argued that the velocity derivatives given by both ‘inner’ and ‘outer’ laws
must be the same in the limit of infinite Reynolds number, then for values of y
in the overlap region,
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where ' denotes differentiation with respect to the first argument. This condition

can be satisfied only if
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in the limit as d/n — oo for values of y in the matched layer.
A similar requirement that the velocities themselves must match yields
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It is clear that a relation between u, and Uy is required to proceed fur-
ther. Fortunately such a relation is provided by the form of the friction law,

equation 6, which is of the form,
Us 1)
= - 23
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The easiest way to proceed is to assume a trial relation for the unknown
function f in equation 23, substitute it, and confirm a posteriori that the as-
sumed form was correct. Therefore, it will be assumed (subject to confirmation)

that " N
U; - (g) (24)

where B is a constant and -y is a constant exponent, both to be determined later.
It follows immediately by substitution into equation 21 and multiplying both
sides by y!~7 that the matching condition on the velocity derivative becomes
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If an inner variable yT is defined as

yh="0 (26)
and ¢ is the outer variable defined as
i= (27)
equation 25 can be rewritten as
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In the limit as 6/ — 0, the ratio of y* to § becomes undefined. In this limit,
the two sides of equation 28 are functions of different independent variables.
Therefore, the matching condition can be satisfied only if both sides equal a
constant. For convenience, the constant is chosen to be C'/(y — 1) so that

c
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and
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Equations 29 and 30 can be integrated directly to yield
BFio(y*) = Cy*" + Ci (31)

and
F2OO = C:ljry + CO (32)

where C; and C, are the integration constants. These can be determined by
imposing the requirement that the velocities themselves match in this limit.
Substituting equations 31 and 32 into equation 21 and using equation ?? yields

C; (%) R C, (33)

This can be satisfied for all §/n only if

C;=0 (34)
and
C,=-1 (35)
The inner and outer forms of the velocity profile in the matched layer are
therefore given by
Inner: N
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It is easy to see by taking the ratio of equations 36 and 38 that the form
of the friction law assumed in equation ?? 1is recovered from the inner and
outer matched layer solutions. Thus the velocity profile in the matched layer is
represented by a power law with universal constants C' and power . Note that
unlike the former empirical attempts to represent the velocity profile by a power
law, here only the matched layer follows this description. Note also that the
exponent - is a universal constant and is not a function of the Reynolds number,
at least in the limit of infinite Reynolds number. The power law profile for the
matched layer derived above should not be confused with previous attempts to
use empirical power law fits to fit the entire profile instead of just the matched
layer (e.g. Hinze ??, Schlicting [?]).



There are several interesting points to be made before leaving this section.
First, note that (as for the Millikan theory) there are only three constants to
be determined from experiment (or other considerations): «, B, and C. Thus,
for example, if plots of the velocity in inner and outer variables are available,
the friction law is completely determined. Second, the velocity gradient in the
matched layer is never a function of just u. and y alone (unlike the Millikan so-
lution). This means that the von Karman eddy viscosity with a linear variation
of distance from the wall is not consistent (with the theory proposed here. It
also means that the theory proposed here overcomes the objection of Long and
Chen mentioned earlier since the matched layer retain a dependence on both
inertial and viscosity effects. Barenblatt [?] has advanced similar arguments
from the perspective of intermediate asymptotics, and also argues on heuristic
grounds that the matched layer should be of power law form. In the following
section, the further implications of the power law results obtained here on the
other parameters of interest will be examined.

6 A Composite Velocity Profile

It is possible to use the information obtained in the preceding section to form
a composite velocity profile which is valid over the entire boundary layer. This
is accomplished by expressing the inner profile in outer variables, adding it to
the outer profile and subtracting the common part (Van Dyke [?]). (Alterna-
tively, the outer profile could be expressed in inner variables, etc.) Since the
overlap region provides the common part, the composite velocity profile in outer
variables is given by

U Us
— =1 Foo
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This composite solution has the following properties:

e Asd/n—= 1, U/Usx — 1+ Fooo(§). Thus there is a boundary layer profile
even in the limit of infinite Reynolds number and it corresponds to the
outer scaling law. This can be contrasted with the Millikan approach for
which U/Us — 1 in this limit.

e As § = 0, U/Usx — (us/Uso)Fioo(y™) for all §/n. This is because the
small § behavior of [1 + Fas(§)] is cancelled out by the last term leaving
only the inner solution.

e Asyt = 00, U/Usx — 1+ Fano. This is because of the large y* behavior
of F1o, which is also cancelled by the last term.

e In the matched layer, only the power law profile remains.
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It is an interesting exercise to substitute the composite solution into the
full boundary layer equation given by equation 1. As expected, the equation
reduces to equation 2 for infinite Reynolds number and to equation 3 as the wall
is approached. This can be contrasted with the substitution of the Millikan law
plus Coles wake function in which the outer equation vanishes identically.

7 The Displacement and Momentum Thicknesses

The displacement thickness, d., is defined by

Und. = / (U — U)dy (40)
0
This can be expressed using equation 39 as
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The integrals I; and I are universal constants and can be evaluated from the
data.

It is immediately obvious from equations 41 and 42 that the outer length
scale is proportional to the displacement thickness. This is quite different from
the Millikan theory where the displacement thickness vanishes relative to the
unspecified outer length scale. The result here is thus consistent with the ex-
perimental observation that the velocity profiles can be collapsed in all but
the region nearest the wall by the free stream velocity and the displacement
thickness.

The momentum thickness, 6, is defined by

U%0 = / U(Uy — U)dy (45)
0
Again using equation 39, the result is
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where
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As for the displacement thickness, the momentum thickness is also asymptot-
ically proportional to the outer length scale, but with a different constant of
proportionality.

Thus, in the limit of infinite Reynolds number, the outer length scale is
proportional to both of these dynamically significant length scales, in contrast
to the Millikan theory. This will be seen to be more consistent with experiment
than the Millikan result. The shape factor can be computed by taking the ratio
of equation 41 and 46. The result is

H = 4./6

I3 Is\ v I, I3 v

The asymptotic shape factor is easily seen to be constant and given by
H— —— (52)

Note that the asymptotic shape factor is greater than unity since Fh, < 1
always since I; < I3. This is in contrast to the Millikan result, but consistent
with the experimental observations to date.
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