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• The importance of frequency response considerations in the use of thin-film 
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ered, and methods for evaluating it are proposed. A departure frequency 
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I N T R O D U C T I O N  

The use of thin-film gauges for heat transfer measurement in 
transient facilities has been well established over the past 30 
years (Vidal [1]; see Schultz and Jones [2] for an excellent 
review). Until recently, attention was focused either on rela- 
tively simple flows (such as the passage of a shock wave) or 
on attempts to measure " m e a n "  heat transfer rates on gas 
turbine blades under quasi-steady conditions. In both types of 
experiments, attention was focused on capturing the rise in 
temperature and mean heat flux, and the fluctuations due to 
periodic flow disturbances or turbulence were of little inter- 
est. In recent years, there has been considerable interest in 
extending the thin-film technique to the measurement of 
fluctuating heat transfer rates in transient experiments, espe- 
cially with regard to gas turbine applications (Dunn and Holt 
[3]; Dunn et al [4, 5]; Doorly and Oldfield [6]). All of these 
experiments used an analog circuit, hereafter referred to as 
the Q-meter, to convert the surface temperature measured by 
the thin-film gauges to heat flux signals. The Q-meter was 
originally developed in the late 1950s (Skinner [7]; Meyer 
[8]) and was redesigned by Oldfield et al [9] to the wide-band 
analog used in this report. While this circuit has the advan- 
tage of directly presenting an analog voltage proportional to 
heat transfer rate, its design is based on the assumption of 
constant thermal properties of the substrate, a condition 
violated in some experiments. Moreover, the Q-meter, al- 
though a considerable improvement over the original designs, 
has a bandwidth substantially lower than that of the gauge 
itself. 

An alternative to the Q-meter is to directly record the 
surface temperatures and then calculate the heat flux numeri- 

cally from either the one-dimensional heat transfer equation 
or an analytic solution to it. One of the most successful 
examples of the latter is the numerical algorithm of Cook and 
Felderman [10] and Cook [11], which assumed constant 
thermal properties. Dunn et al [5] attempted to include vari- 
able thermal properties by numerically solving the governing 
equations using the thin-film surface temperature data as 
input. Prior to the present work, a portion of which was 
reported by Dunn et al [5], there appears to have been no 
attempt to analyze the ability of these numerical techniques to 
resolve fluctuating heat transfer rates. 

The purpose of this paper is to present a detailed evaluation 
of the frequency response of both analog and numerical 
approaches to the determination of fluctuating heat transfer 
rates from the output of thin-film gauges in transient environ- 
ments. The amplitude and phase errors are determined, and 
their effect on simulated signals is assessed. 

T H E  P R I N C I P L E  A N D  G O V E R N I N G  
E Q U A T I O N S  

Transient heat transfer measurements with thin-film gauges 
depend primarily on the applicability of one-dimensional heat 
conduction as shown in Fig. 1 so that the process can be 
described by the one-dimensional equation 

o c -  Z : - -  O) a x  \ ax  ] 
subject to the surface condition 

(t(0, T)  = k OT 
- 7Xx=o (z) 
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Figure 1. Coordinate system for Eq. (1). 

For constant thermal properties, this equation can be solved 
analytically using Laplace or Fourier transform techniques. If 
T(0, f )  and 0(0, f )  are the Fourier transforms of the surface 
temperature and heat flux, respectively, then 

0(o, f )  = s )  (3) 

from which it follows that the moduli and phases are related 
by 

I (o, f ) l  = ~ x / ~ l  1"(0, f)] (4) 
and 

/ t~(0, f )  = / J~(0, f )  + 4 5 "  (5) 

A M P L I T U D E  A N D  P H A S E  R E S P O N S E  

The ideal analog Q-meter would be one which duplicates the 
response characteristics of Eqs. (3)-(5) over the frequency 
range of interest. Any deviation from this ideal characteristic 
will result in a distortion of the unsteady heat transfer signal. 

That this is indeed the case can be seen by viewing the 
Q-meter as a linear circuit as shown in Fig. 2a. For such 
systems the Fourier transform of the output is simply the 
Fourier transform of the input multiplied by the frequency 
response function of the system.* Thus if e.i(f) and eoi(f) 
represent the input and output to this ideal system, 

e o , ( f )  = H i d ~ ( f ) e i ( f )  (6) 

H ( f )  i d e a l  

(a) 

e i ( f )  -~ I[ ( f )  = ^ D - -  ^ ideal  e o i ( f )  I ldep(f) % ( 0  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Hrea ]  ( f )  

(b) 

Figure 2. (a) Schematic of ideal linear system. (b) Schematic of 
real linear system showing departure from ideal. 

* The frequency response function of a system is the Fourier transform 
of the impulse response function of that system. 

The ideal frequency response function for a Q-meter would 
be (to within a factor dependent on the thermal properties of 
the substrate) 

Hideal(f ) = x/j21rf (7) 

In practice, circuits are never ideal. These departures can 
often be characterized by introducing a hypothetical filter as 
shown in Fig. 2 b, which accounts for the departures from the 
ideal. The output from the real system can be written as 

Co(f)  = Hdep(f)eoi  

= Hdep(f)Hid~(f)~'i(f) (g) 
The product Hd~(f)Hid~(f) is thUS the real response of the 
analog, H,~a1(f). Thus the frequency response function of 
the departure from ideal can be determined as 

Hd~(f ) = Hre~(f)/Hid~(f) (9) 

Since, in general, the frequency response function is com- 
plex, the departures from ideal can be in both the amplitude 
and phase. 

The effect of attenuating the higher Fourier components by 
a rolloff in the amplitude response is generally well under- 
stood. The effect of phase errors can be much more difficult 
to assess because, in effect, some Fourier components are 
delayed with respect to others so that the waveforms are 
distorted. An important exception occurs when the phase 
errors vary linearly with frequency, in which case all 
Fourier components are delayed by a fixed time delay and no 
distortion occurs. 

Figures 3 a and 3b show the amplitude and phase charac- 
teristics of the Q-meter design due to Oldfield et al [9]. As 
shown in the preceding section, it is the departure frequency 
response function which is primarily of interest here. Figures 
4 a and 4 b plot the amplitude and phase characteristics of the 
departure. The linear-linear plot of the amplitude in Fig. 4a  
makes it clear that there is considerable attenuation at fre- 
quencies well below the half-power points, a fact often 
obscured by the usual log-log plots. It is also clear from both 
Figs. 3b and 4b that the Q-meter does not produce the 
desired 45* phase shift. Fortunately, however, the phase shift 
is linear with frequency below the half-power point ( - 1 0 0  
kHz). As pointed out earlier, this means that the individual 
Fourier components are not shifted with respect to each 
other but the entire signal is delayed by an amount A / 2  ~r 
where A is the constant of proportionality between the phase 
shift A and the frequency f .  The lag for the circuit shown is 
- 4  /~s. Note that even this linear phase shift can pose a 
problem when more than one gauge is to be used to obtain 
cross-spectral information if the phase characteristics of all 
Q-meters are not the same. 

Figures 5 and 6 show the effect of the departures from 
ideal on two typical heat flux signals. Figure 5 shows the 
response of the analog to a square wave with a fundamental 
frequency of 13 kHz. Figure 6 shows the response of the 
analog to a pulse train with fundamental frequency also 
chosen at 13 kHz and pulse width equal to one-seventh of the 
period. Unlike the square-wave response, which is reason- 
able, the pulse train shows considerable distortion because of 
the removal of the harmonics by the finite bandwidth of the 
analog. Without some careful thought about the representa- 
tive Fourier series for the pulse train, it might have been very 
difficult to have guessed the real waveform from the analog 
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Figure 3. (a) Gain characteristic for Q-meter [9]. (b) Phase 
characteristic for Q-meter [9]. 

2 0 0 .  I 1 I l 
I 

"~ I00.- 

~ 0 . -  

< 

~ -lo0.- 

- 2 0 0 .  t I i 

O. 20. 40,  60.  80.  100. 

Frequency ( kHz)  

(b) 

Figure 4. (a) Gain characteristic for difference from ideal re- 
sponse. (b) Phase chracteristic for difference from ideal re- 
sponse. 

output, especially in view of the negative regions of the 
signal. Thus the importance of knowing the frequency re- 
sponse of the system cannot be underestimated if the original 
waveform is to be determined. 

A MODEL FOR THE UNSTEADY 
TEMPERATURE SIGNAL 

The unsteady temperature signal from a thin-film gauge on 
the rotor of a turbine blade in a transient test facility (in this 
case a shock tunnel) is shown in Fig. 7. The rapid rise in 
temperature is associated with the arrival of the test gas and 
marks a step change in the heat flux. The temperature signal 
rises with an approximately t 1/2 dependence because of the 
heat transfer to the substrate. Superimposed on the overall 
rise are the fluctuations resulting from the vane-wake cross- 
ings and other unsteady effects in the flow. 

One of the difficulties in testing either analog circuits or 
numerical algorithms is the difficulty in generating a known 
temperature input signal which possesses the characteristics 
of a transient experiment like that described above. A particu- 
larly useful choice for a test signal would be one which yields 
a step change in heat flux (corresponding to the test initiation 
in a transient facility) superimposed on which is a sinu- 
soidally oscillating unsteady heat flux. Such a heat flux signal 
is given by 

q(O, t) = A o + A , c o s 2 7 r f o t  + B, sin27rf0t (10) 

where fo  is a given frequency and where A0, A1, and B 1 
are arbitrarily chosen coefficients. This is shown in Fig. 8a 
and corresponds to a single Fourier component plus the dc 
part of the signal which might be seen in a transient facility. 
If  the temperature signal which produces such a heat flux 
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Figure 5. Response of Q-meter to input which would ideally 
generate a square-wave output. 
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Figure 6. Response of Q-meter to input which ideally generates 
a pulse train output. 

could be determined, it could be utilized to test numerical 
algorithms designed to directly calculate the heat flux from 
the measured surface temperature. 

For constant thermal properties and zero film thickness, 
Eqs. (1) and (2) can be solved analytically to yield (Vidal [11) 

1 f t  q(0 ,  X) 
T(O, t) - Jo - -  dX + T O (11) , / t -  x 

-L, 
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Figure 7. Typical surface temperature measured by thin-film 
gauge on turbine rotor in a shock tunnel. 

Substitution of Eq. (10) into Eq. (11) yields, after integration, 

v'~-pCk 
- -  r ( o ,  t )  

Ao 

-- 8.v/~;Z/ot + 2, /~ 

X { C(27rfot)[ ~oo 

where 

and 

AI 
+ S(2 7rf°t)  Ao 

B1 sin 27rfot]  c ° s27r f ° t  + A----o 

s in27rf° t  + A---o c°s27r f ° t  (12) 

1 f u  cos c~ 
c ( . )  - J0 (13) ~ d~ 

1 r u sin cx 
S(u) - Jo (14) ~ d~ 

The integrals C(u) and S(u) can be recognized as the 
familiar Fresnel integrals (Abramowitz and Stegun [12]). 
Figure 8b shows the temperature variation which would 
produce the heat transfer signal corresponding to A I = 0, 
B I/A o = 1/4. Because the Fresnel integrals in Eq. (12) can 
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Figure 8. (a) Step rise in heat flux plus sinusoidal oscillation 
[Ai IAo = 0, AI IAo = I14 in Eq. (I0)]. Co) Response of 
surface temperature to heat flux in (a). 
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be evaluated by a variety of convenient formulas, the temper- 
ature history of Eq. (12) is particularly useful for testing 
finite-difference algorithms for solving Eq. (1) with unsteady 
inputs. It can also be used to evaluate the overall phase and 
amplitude response of the data processing system if the 
impulse response function of the system is known. 

Before using the Fresnel-integral temperature history, it is 
interesting to look at the asymptotic behavior of Eq. (12). It 
is straightforward to show by using the asymptotic expan- 
sions of the integrals C and S (Abramowitz and Stegun [12]) 
that for 2 , r f  0 t ~- 1, 

Ao 
T(0,  t) 

,sin  ,o, ] 
x + X / 2 1 r f o t  + " "  

X c°s21r f ° t  + A---o s in27rf° t  

[1 7 c ° s 2 7 r f o t  ] 

+ 2 V / 2 7 r f o t  + " '"  

_ BI  0cos2  ot]} Ix,, 
The neglected terms are of order (27rf0t ) - l, and the expan- 
sion is valid for 2 ~ r f o t  > 40 (or after about six cycles). 

The t t/2 dependence can be recognized as the surface 
temperature rise due to a step change in heat flux applied to a 
semi-infinite slab. Of particular interest to the experimentalist 
is the fact that the ratio of the fluctuating part of the tempera- 
ture to the t ~/2 rise is continuously reduced with time. This 
makes it very difficult to directly sample the film temperature 
signal without burying the fluctuating part in the quantization 
noise of the A / D  converter. The Q-meter with its v ~  
response tends to alleviate this problem, as does the differen- 
tiation approach of Dunn et al [5]. 

In the following section the Fresnel integral temperature 
history will be used to evaluate several numerical schemes for 
directly evaluating the heat flux from the surface temperature. 
Of particular interest will be the amplitude and phase errors 
introduced by the algorithms. Such an evaluation will be 
possible because the actual heat flux is known to be that given 
by Eq. (10). 

N U M E R I C A L  A L G O R I T H M S  F O R  
C A L C U L A T I N G  H E A T  F L U X  F R O M  

S U R F A C E  T E M P E R A T U R E  
M E A S U R E M E N T S  

An alternative to the analog Q-meter is the direct calculation 
of heat flux from the time-dependent surface temperature 
measured by the gauge. For all but the simplest inputs (and 
then only if the thermal properties are assumed constant), the 
solutions to Eqs. (1) and ( l l )  cannot be obtained in closed 
form and must be calculated numerically. The particular 

problem here falls into the general class of inverse heat 
conduction and ill-posed problems for which there is an 
extensive literature. (Beck et al [13] provide an excellent 
summary of both examples and pitfalls of the various numeri- 
cal approaches.) This paper will consider two numerical 
algorithms which have been used for processing thin-film 
gauge data: the first, the finite-difference approximation to the 
exact solution for constant thermal properties proposed by 
Cooke and Felderman [10], and the second, the simple 
implicit scheme for variable thermal properties used by Dunn 
et al [5]. The focus of the evaluation here will be on the 
ability of the algorithms to faithfully represent the amplitude 
and phase of rapidly varying input data and on their sensitiv- 
ity to the quantization errors and noise encountered in typical 
applications. 

The Cooke-Felderman Algorithm This algorithm is based 
on the integral solution to Eqs. (1) and (2) for constant 
thermal properties, which is 

T(0,  t) 

× ,/7 
m +  1 [ t  [T(0, t ) -  T(0, X)] d)~l 

J 
(16) 

The first numerical approximation to Eq. (16) was proposed 
by Vidal [1], who used it to calculate heat flux from thin-film 
gauges in shock tunnels. Cooke and Felderman [10] im- 
proved Vidal's algorithm by approximating the temperature 
in Eq. (16) at time steps At with a piecewise linear signal. 
The results for the nth realization of the surface heat flux 
(t = nth At) is given by 

n T,- - ri_  
x Z (17) 

i = l  (11 - -  i )  '12 + ( n  - i + 1) '/2 

In spite of its obvious advantage over a finite-difference 
solution, Eq. (17) is valid only if the thermal properties are 
constant. Moreover, whereas it has received extensive use in 
the calculation of heat fluxes in transient environments, the 
ability of this algorithm to accurately reproduce rapidly vary- 
ing fluctuations in the unsteady heat flux has not been estab- 
lished. 

If the effects of variable thermal properties on the instanta- 
neous heat flux are to be accounted for, there appears to be 
no alternative to solving the heat conduction equation numeri- 
cally. (Note, however, that corrections to Eq. (17) for vary- 
ing thermal properties have been proposed by Miller [14].) 
Dunn et al [4] proposed a technique utilizing a Crank-Nicol- 
son finite-difference procedure. Unfortunately, the equations 
were cast in terms of the similarity variable ~ = x / v / ~  -, 
which rendered the solution incapable of following rapid 
fluctuations at large time because of the increasing grid 
spacing. The problem encountered above has been reported 
in detail in Dunn et al [5]. However, because of its impor- 
tance to the problem of resolving fluctuating heat transfer 
rates, it will be briefly summarized here. 
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When the heat transfer rate contains a part that fluctuates at 
f rea~ncy 6o,* a second scale enters the problem--namely 

, which is properly called the skin depth and is 
independent of time. The classical solution of a sinusoidal 
surface temperature variation (Carslaw and Jaeger [15]) con- 
tains an early-time transient plus the solution: 

A T ( x , t )  = A e x p { - x ~ } c o s { o o t -  x x / ~  } 
( 1 8 )  

Thus the high-frequency portion of the surface temperature 
rise has a very shallow penetration, and care must be taken in 
the numerical work to resolve this thin layer properly. Solu- 
tions of Eq. (1) which use a fixed step size in the ~ direction 
will have a small value of A x at early time and a large one at 
late time. Clearly the solution is to avoid the problem by 
differencing in x, not ,/. 

Dunn et al [5] proposed a simple-implicit algorithm given 
by 

4,(i, j + 1) - 4,(i, j )  
--  (xj, tj) 

t j + ,  - t j  

4 , ( i +  1 , j +  1) - 2 4 , ( i , j +  1) + 4 , ( i -  l , j +  1) 
X 

( A x )  2 

( 1 9 )  

where 4, is defined by the Kirchhoff transformation (see 
Carslaw and Jaeger [15]) by 

f 4, ~ d r  ( 2 0 )  
Tre f kref 

This equation was solved on a grid of variable size. At every 
time step, the boundary condition of zero temperature rise 
was enforced at a depth of 7 ~ t .  The heat transfer rate 
was found from a second-order accurate expression for the 
derivative at the surface. 

Implicit numerical procedures for solving Eq. (15) work 
best when the step-size ratio 

r = c~at / (ax)  2 (21) 

is in the range 0.25-0.5 [16]. It happens that this criterion 
can be met for the test conditions of interest here by taking 
the sampling interval A t on the basis of the Nyquist criterion 
to be inversely proportional to the highest frequency of 
interest, that is, At -- 7r/~ -- 1/2f. The spatial step size 
AX must be small enough to resolve the skin depth; that is, 
A x -< x/~ / o~. A constant value of the step-size ratio r will 
satisfy both of these criteria. 

E V A L U A T I O N  OF N U M E R I C A L  A L G O R I T H M  

The purpose of this section is to evaluate the algorithms 
outlined above by using the Fresnel-integral temperature 
proposed earlier. Of special concern to the experimentalist 
are the rate at which data must be taken relative to the 
frequencies of interest and the sensitivity of the algorithms to 
noise on the sampled signal or introduced by the sampling 
process. 

* The radial frequency o~ = 2 ~rf is used here for convenience. 

Digital temperature data were generated using the Fresnel- 
integral temperature given by Eq. (12) and shown in Fig. 8b. 
These data were sampled at rates of 3.75, 7.5, 15, and 30 
times the fundamental and then used as input to the numerical 
algorithms. 

Figures 9-12 demonstrate the relative abilities of the 
Cooke-Felderman algorithm of Eq. (17) and the simple 
implicit scheme of Eq. (19). Note that the progressively 
poorer reconstruction of the sine wave part of the signal with 
decreasing number of points per cycle is due to the fact that 
the graphs have been produced using straight line segments, a 
procedure generally requiring about 10 points per cycle to 
produce a smooth sinusoidal curve. Of more concern here are 
the magnitude and phase errors of the computed heat flux 
signals relative to the exact signals. It is clear from the 
figures that both algorithms suffer from a slight phase lag 
(about 20*) for the lowest sampling rate (Fig. 12). This has 
virtually disappeared for the Cooke-Felderman algorithm 
when the sampling rate has increased to f s / f o  = 15 (Fig. 
10) but persists to even f s / f o  = 30 (Fig. 9) for the simple 
implicit algorithm. Figure 13 shows how the relative magni- 
tudes of the sinusoidal part of the signal vary with the 
sampling rate. The Cooke-Felderman algorithm slightly 
overpredicts the peaks, whereas the simple implicit scheme 
underpredicts them. Both algorithms converge toward the 
correct amplitude as the sampling rate increases. 

In order to assess the sensitivity to noise on the input data, 
a second set of input data was generated by truncating the 
digital word size of the input data to a single byte. The effect 
is to introduce a quantization noise on the signal which is the 
same as if it had been sampled by an 8-bit A /D  converter. 
(Note this is a relatively large amount of noise, since most 
A/D converters that would be employed for unsteady signal 
measurement are 10 bits or greater.) Figure 14a shows a 
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Figure 14. (a) Typical Fresnel-integral temperature input with 
and without 8-bit quantization. (b) Difference between exact and 
quantized Fresnel-integral temperatures in (a). 

typical quantized input signal, while Figure 14b shows the 
difference between quantized and original input signal. The 
"noise level" is most easily characterized by defining e to be 
the ratio of the size of the quantized step to the peak-to-peak 
fluctuating part of the temperature. For the case shown here 
and in the subsequent applications, e = 0.012. 

Figures 15a-d show the effect of the 8-bit quantization on 
the Cooke-Felderman algorithm for the four sampling rates. 
These can be compared to the simple implicit results shown 
in Figs. 16a-d. Both algorithms show a slight increase in the 
noise present on the signal with increasing sampling rate. The 
simple implicit algorithm, however, is less sensitive to noise 
than is the Cooke-Felderman. This can probably be at- 
tributed to its poorer frequency response, which effectively 
low-pass filters the quantization noise. 

S U M M A R Y  A N D  C O N C L U S I O N S  

The use of thin-film gauges for the measurement of unsteady 
heat transfer in transient facilities has been briefly reviewed, 
with particular attention to how the heat transfer is deter- 
mined from the film temperature. The removal of Fourier 
components by the finite frequency response of analog Q-me- 
ters was shown to have a significant effect on the heat transfer 
inferred. Similarly, the sampling rate and choice of computa- 
tional algorithm were shown to introduce similar problems 
for the numerical reconstruction of the unsteady heat transfer 
from the digitally sampled film temperature. The digital 
methods have the advantage that they require less hardware 
and can easily include the effects of the temperature-depen- 
dent thermal properties of the substrate. 

The fundamental frequency limitations of thin-film gauges 

have not been discussed but will be mentioned briefly here. 
The upper frequency limit is proportional to (ozf/d2) U2, 
w h e r e  o L f  is the thermal diffusivity of the film itself and d is 
its thickness [2]. This is typically of order 106 Hz and is 
therefore well above the bandwidth of most applications. The 
principal determinant of the lowest frequency which can be 
measured is the penetration depth, which must be small 
compared to the size of the film so that the heat transfer into 
the substrate is effectively one-dimensional. Thus, if I is the 
smaller of the gauge dimension and the depth of the substrate, 
the lower cutoff frequency is of order (~/12) 1/2, where c~ is 
the thermal diffusivity of the substrate, [2]. Analog Q-meters 
can deviate from the f~/2 response at substantially higher 
frequencies because of design limitations. It is easy to see that 
these lower frequency limits place an upper limit on the 
duration of the test in transient facil i t ies--at  least the duration 
for which the determination of heat flux by the methods 
discussed here will be valid. 

Finally, it should be noted that there are situations where 
thin-film gauges can be used for the measurement of periodic 
or statistically stationary heat flux measurement. [We are 
grateful to P. Magari and Professor J. LaGraff of Syracuse 
University for pointing this out to us.] The first of these is 
when the average heat flux is identically zero, in which case 
the transient part of the solution given by Eq. (15) dies off 
and only the periodic component remains. Then Eq. (3) can 
be applied directly to the unsteady part of the temperature 
signal to obtain spectra of the heat flux. This presumes, of 
course, that the lowest frequencies of interest are above the 
low-frequency cutoff described above and that the thermal 
properties are nearly constant. The second situation arises 
when the transient part of the temperature signal contributes 
only below the cutoff frequency, so that the unsteady part of 
the signal is not contaminated by it. In this case, the average 
heat transfer cannot be determined, but Eq. (3) can still be 
shown to be valid for the unsteady heat flux determination. 
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NOMENCLATURE 

dc part of unsteady heat flux signal, W/m z 
coefficient in Eq. (10), W / m  2 
coefficient in Eq. (10), W / m  2 
thermal capacity, J /(kg • K) 
Fresnel integral, see Eq. (13), dimensionless 
film thickness, m 
Fourier transform of input voltage, V • s 
Fourier transform of ideal output voltage, V • s 
Fourier transform of real output voltage, V • s 
defined by Eq. (9), dimensionless 
frequency, Hz 
frequency response function of ideal system, 
dimensionless 
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H~ea~ frequency response function of  real system, 
dimensionless  

k thermal  conductivi ty,  W / m  
1 smallest  lateral d imens ion  of  film, or depth of  

substrate,  m 
heat  flux, W / m  2 

q Four ier  t ransform of  q,  W • s / m  2 
S(u )  Fresnel  integral ,  see Eq. (14), dimensionless  

T temperature  of  gauge,  K 
T Four ier  t ransform of  T,  K • s 
t t ime, s 

x coordinate  in substrate (Fig. 1), m 

Greek Symbols 
thermal  diffusivity of  substrate,  m 2 

ctf  thermal  diffusivity of  film, m 2 
7 constant  ( =  0 .3989) ,  d imensionless  

A t t ime be tween  samples,  Eqs. (17) -  (21), s 
E ratio of  quantizat ion step to peak-to-peak signal, di- 

mensionless  
integrat ion var iable  (t ime),  s 

p density of  substrate,  k g / m  3 
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