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ABSTRACT

The dynamical equations governing the streamwise evolution
of coherent structures in the axisymmetric jet shear layer are de-
rived. The method utilized is similar to that used by Aubry et al
(1988) and Glauser et al (1989). This method consists of perform-
ing a Galerkin projection, using the basis functions obtained from
application of the proper orthogonal decomposition (POD), onto the
Navier Stokes equations. In this study, however, the so called ran-
dom coefficients are written as function of the streamwise direction,
and not time as in the previous studies. This results in a boundary
value problem and not an initial value problem as was the case in the
afore-mentioned work. This type of an approach is important from
an experimentalist’s point of view. The two-point correlation tensor
(needed for application of the POD) can be measured much easier
at one streamwise location as a function of time difference rather
than at many streamwise separations. The basic idea is to measure
the two-point correlation at one streamwise location and infer the
evolution of the coherent structures in the streamwise direction from
the dynamical equations. These equations and some ideas on how to

solve them numerically will be discussed.
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1 Introduction

In recent years, two separate developments have altered the basic
statistical framework of turbulence. There is an abundance of exper-
imental evidence implying the existence of coherent structures and
recent applications of dynamical systems theory to turbulence sug-
gest that such flows reside on relatively low dimensional manifolds
or attractors (v. Aubry et al 1988 and Bartuccelli et al 1989).

Aubry et al (1988) were the first to link low dimensional
chaotic dynamics to a turbulent open flow system. They used the
proper orthogonal decomposition (POD) to provide basis functions
to obtain low dimensional sets of ordinary differential equations from
the Navier-Stokes equations. Used in conjunction with Galerkin pro-
jection, the POD yields an optimal set of basis functions in the sense
that the resulting truncated system of ordinary differential equations
captures the maximum amount of kinetic energy among all possible
truncations of the same order. Sirovich and Rodriguez (1987) have
shown, for the Ginzburg-Landau system, that these basis functions
are fairly robust and can be used over a wide range of the bifurca-
tion parameter. Chambers et al. (1988) have seen similar trends for
Burgers equation. The basis functions that Aubry et al (1988) used
were those obtained experimentally by Herzog (1986) for the near
wall region of a pipe flow. The solutions to the equations that they
derived exhibited intermittent behavior, and were then analyzed us-
ing dynamical systems theory. The results to date show consistency
between the behavior of these equations and events seen in experi-
mental work.

The axisymmetric jet is also a good candidate for a similar ap-
proach because the series converges quickly. This was demonstrated
by Glauser et al (1987), where the instantaneous signals were almost
completely reconstructed with only 3 terms from the expansion. By
assuming the flow to be approximately homogeneous in the stream-
wise direction, Glauser et al (1989) and Zheng and Glauser (1990)



were able to use a similar approach (where the so called random coef-
ficients are written as a function of time) and examined the sequence
by which the streamwise wavenumbers and azimuthal mode num-
bers retained in the model contribute in time. Their initial results
indicate that there is a transfer of energy between certain stream-
wise wavenumbers and azimuthal modes 4, 5 and 6, consistent with
the mechanism for turbulence production suggested by Glauser and
George (1987) for the jet shear layer.

In the study reported here the so called random coefficients,
for which the equations are written, are functions of the streamwise
direction and not time as in the previous studies. This results in a
boundary value problem and not an initial value problem as was the
case in the afore-mentioned work. This type of approach overcomes
the need for assuming the flow to be homogeneous in the stream-
wise direction, and thus more closely models its spatially developing
character. Also it more closely reflects the experiments (from which
the basis functions are taken) since the two-point correlation tensor
(needed for application of the POD) can be measured much more eas-
ily at one streamwise location as a function of time difference rather
than at the many streamwise separations necessary to decompose a
developing flow.

The axisymmetric jet is stationary so the appropriate decom-
position in time is the Fourier transform (v. George 1988). In the
azimuthal direction the flow is periodic, hence the discrete Fourier
modes are appropriate. In the radial direction the flow is strongly in-
homogeneous so that the eigenfunctions obtained from applying the
POD are utilized. Galerkin projection is then used in conjunction
with the POD to obtain a truncated system of ordinary differential
equations. The modes neglected in the truncation are accounted for
by a Heisenberg model as was done in the temporal studies of Aubry
et al (1988) and Glauser et al (1989). Finally, the evolution of the co-
herent structures in the streamwise direction is inferred from the re-

sulting dynamical equations. This work appears to be the first which



utilizes low dimensional dynamics in conjunction with Galerkin pro-
jection and the POD to examine the spatial dynamics of coherent
structures in a high Reynolds number axisymmetric jet free shear

layer.

2 Proper Orthogonal Decomposition

In 1967 Lumley suggested that the coherent structure should be that
structure which has the largest mean square projection on the veloc-
ity field. This process involves maximizing the mean square energy
via the calculus of variations and leads to the following integral eigen-
value problem.

Ai(Z) = / Rij(£,%)¢;(F)dZ (1)

The symmetric kernel of this Fredholm integral equation is the two—
point correlation tenser R;; defined by

Rij(2,%) = ui(@)y;(2), ()
where & is the candidate structure and Z and #’ represent different
spatial points in the inhomogeneous directions and different times if
the flow is non-stationary.

From the Hilbert-Schmidt theory it can be shown that the
solution of a Fredholm integral equation of the first kind for a sym-

metric kernel and a finite energy domain (i.e., statistically inhomo-

geneous) is a discrete set, hence equation (1) can be written as
\6r(d) = [ Riy(7 7)o} )aE 3)

The eigenfunctions of the Fredholm equation are orthogonal over the

interval and

/ 82(Z)I(2)dZ = b (4)

for normalized eigenfunctions. The eigenvalues of the Fredholm equa-
tion with a real symmetric kernel are all real and uncorrelated

ata™ = N6, (5)



and the fluctuating random field 4; can be reconstructed from the
eigenfunctions in the following way

%(2) = Y a"¢}(2). (6)

n=0

The random coefficients are calculated from
" = / T (2)d(Z) (7)

where the ¢ are the eigenfunctions obtained from equation (3). The
turbulent kinetic energy is the sum over n of the eigenvalues A",
and each structure makes an independent contribution to the kinetic
energy and Reynolds stress.

If the random field is homogeneous or periodic in one or more
directions or stationary in time, the eigenfunctions become Fourier
modes, so that the POD reduces to the harmonic orthogonal decom-
position in these directions. In this study we will treat the jet flow
as periodic in the azimuthal direction and stationary in time. We
will not transform over the streamwise direction in this case because
we are writing the random coefficients as a function of the stream-

wise variable 2. Under these conditions the spectral tensor may be
defined by

Sij(ryr'sm, £,2) = | Rii(r, 7,0, 7,7)e~ 2 +mb) g 40 8
J J

where r and r’ represent different spatial locations in the radial di-
rection ( the strongly inhomogeneous direction), * and 6 are the
separations in time and the azimuthal direction respectively, f is
the frequency, m is the azimuthal mode number and Z denotes the
streamwise location where the correlation tensor is measured. Equa-
tion (3) now becomes

AM(m, f)ei(r,m, f,7)

- /Q Sij(rr'sm, £, 5N m, f,3)'dr. (9)



This equation can be solved numerically using the measured values of
Si;(r,7',m, f,Z) obtained by Glauser and George (1987) which were
obtained at 3 diameters downstream in the jet shear layer. It should
be noted that in this case the eigenvalues and eigenfunctions are now
a function of azimuthal mode number m and frequency f.

3 The Dynamical Equations

The momentum equations for an incompressible flow in cylindrical
coordinates are
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We assume that the p and p are constant and F, = F; = F, = 0.
By decomposing the instantaneous dependent variables into
a fluctuation and an average over the azimuthal direction and time,
the equation for the fluctuating velocity can be obtained as
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where M = u,y + % 7 + uzg— yt=r,0,2,06is the Kronecker delta,
p is the fluctuating pressure, i,, iig and @, are the fluctuating veloc-
ities in the radial, azimuthal, and streamwise directions respectively,
and U, and U, are the mean streamwise and radial velocity respec-
tively. These mean velocities must also satisfy the averaged continu-
ity equation. It should be noted that the terms involving U, are kept
in the spatially evolving problem considered here whereas Zheng and
Glauser (1990) neglected these terms. In the high Reynolds num-
ber jet studied here we can neglect the viscous terms in equation
(13) and this will be done in the following section when the Galerkin
projection is performed.

We seek a relationship which relates the mean velocities U,
and U, to the Reynold’s stress since the actual measured mean ve-
locity profiles will be incorrect for the truncated system of equations
to be studied. The equation which relates these (to second order)
can be derived from the z momentum equation as

L0 - . 2T
where the mean pressure term has been eliminated from the stream-
wise equation by integrating the averaged radial equation (v. Ten-
nekes and Lumley 1972). Equation (14) indicates that the Reynold’s
stress is balanced by the mean convection and provides communica-
tion between the mean flow and the Reynold’s stress for the evolving
shear layer. This result is quite different than the that of Zheng and

Glauser (1990) who treat the flow as homogeneous in z, resulting

U.) (14)



in the Reynold’s stress being balanced by the viscous terms. This
modifies the character of the ODEs as will be seen in the next section.

4 Galerkin projection

The Galerkin method is well known and has been used extensively to
study turbulence and the instability of various fluid flows (v. Lin et
al (1987) and references therein). The essential idea of the method
is to expand the dependent variables in terms of a finite series of
independent basis functions. The basis functions form a complete
basis for the relevant class of functions, and they satisfy the relevant
boundary conditions. In this work we use a Galerkin projection
in conjunction with the POD (to supply the basis functions) which
minimizes the error due to the truncation and yields a set of ordinary
differential equations for the coefficients (v. equation 7).

The Galerkin projection is performed on the Fourier Trans-
form (over time and in the azimuthal direction) of the Navier Stokes

equations so that is is useful to define the following equations:

w(z,0,n0)= 3 / eI g (fom r 2)df  (15)

m=—00

T oo .
ﬁ,‘(_f,m,r,z) = / / 62"J(tj+m0)ﬁg‘(2,0, T,t)dtd0 (16)
—-rJ=-00

We expand i;(f,m,r,z) in terms of the coefficients and eigenfunc-
tions in the following manner

a(fym,r,2) =Y af n(2)7 s m(T). (17)

Note the z dependence of the random coefficients. We then substitute
these equations into the Fourier Transform of equation (13) after
eliminating the viscous terms and perform the Galerkin projection.
This can be written as

R
(&', N) :/0 Ni(r, 2)d(r)dr = 0 (18)
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where N;(t, z) represents the Fourier Transform of the Navier-Stokes
equations (i.e. equation 13 with the viscous terms neglected).

Finally, after performing the above and utilizing the orthog-
onality conditions (v. equation 4) we obtain the following set of
coupled ordinary differential equations for the coefficients:

0 = > a}nl-27jf6u]
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where

b! flom-m' = d’ - (20)

In our ordinary differential equation

0= Bl+ Cq + Dgy + MeanFlowTerms

+PressureTerm (21)

there are 5 parts. The first term on the right hand side (RHS) is a

linear term that comes from the time derivative of the Navier-Stokes



equations. The second and third terms on the RHS are quadratic
terms that are a consequence of the fluctuation-fluctuation interac.
tions and exhibits the energy transfer between the different eigen-
functions(from the POD) and the Fourier modes and B, C, and D,
are all matrices. The fourth term, not shown here due to lack of
space, is a result of the mean flow, fluctuation terms in equation
(13). It should be noted that the third and fourth terms contain the
spatial derivative of our coefficient a with respect to z. The final
term is the pressure term which will vanish if the integration covers
the whole domain. In the jet shear layer we cover most of the domain
in our integration (unlike Aubry et al 1988 who studied the near wall
region and not the whole domain of the turbulent boundary layer),
hence we will neglect this pressure term. This equation, unlike the
temporal equations derived by Glauser et al (1989), does not have
a cubic term. This is a direct result of how we are handling the
relationship between the mean flow and the Reynold’s stress for the
evolving shear layer. Instead of eliminating the mean flow terms from
the system of ODEs as was done by Glauser et al (1989), here we
propose to solve equation (14), along with the mean continuity equa-
tion, simultaneously with the system of ODEs. Perhaps it would be
easier to decompose the flow initially by using the mean and fluctu-
ating components instead of only the fluctuating. However, looking
at the fluctuating part by itself, is more instructive for now since it
highlights the diflerences from Glauser et al (1989) and Aubry et al
(1988).

An interesting point to note is that the b terms (i.e., %ﬂ)
can be eliminated from equations (19) through (21) by utilizing the
equation of continuity for the fluctuations, which, in terms of the
random coefficients can be written as

d 1 im
d2: ¢i,j,m = —ag',m['(;(ﬁi,j,m + ;¢£,f,m + Td)é,f,m]‘ (22)

This reduces the ODEs to a system of coupled algebraic equations
which is an intriguing result.
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5 The Energy Transfer Model

When we truncate at some cutoff point we need to account for the en-
ergy transfer between the included and neglected modes. The effect
of the neglected modes will be accounted for by utilizing a Heisen-
berg model(v. Aubry et al. (1988)). The assumption is that the
neglected modes withdraw energy from the modes that our kept, as
if a certain turbulence viscosity were present.

The equation for vr, our turbulence viscosity, can be shown
to be (v. Zheng (1990))

aZf,m,n A%

fm
vr = _— (23)
RZj,m,n ’\f,mS
where
/ [—== 'fm 'fm - —1—47r2m qbtf' Ttmldr — 4n2f2}

a is a dimensionless parameter and the sums are over the first ne-
glected modes. We now substitute v into our ordinary differential
equations. The equations then have the form

0= Bili +vrByl + Cqy + Dg,

+MeanV alue FluctuationTerms (24)

where [; is the linear term from the time derivative of the Navier—
Stokes equations as was shown earlier in equation (21) and I, is a
linear term introduced because of the assumption of the neglected
modes acting as a viscosity on the modes that are kept.

The effect of the energy transfer model is to introduce the
parameter a which becomes the bifurcation parameter in our system
of ODEs. The larger o the more energy that the neglected modes
take from our system so that the system should be stable. As a
decreases less energy is extracted so that we expect our system to
become unstable.
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6 Truncations and Discussion

A truncated version of equation (19) must be developed. A basic
guide in the selection of which terms to keep in the model is to re-
tain a minimum number of terms but yet keep as much energy in the
system as is necessary to retain the essential dynamics of the flow
phenomena (v. Aubry et al 1988 and Glauser et al 1989). Figure
1 shows the dominant eigenvalue obtained from the application of
the POD in the jet shear layer at 3 diameters downstream, plotted
versus frequency and azimuthal mode number. This plot indicates
that there is an exchange of energy between the various frequen-
cies and azimuthal mode numbers, and in particular, that there is
a maximum energy ridge (remember that the eigenvalues are energy
integrated across the jet shear layer) between the two peaks for az-
imuthal modes 0 and 1 and the peak at azimuthal mode 5. The peak
in the frequency direction for azimuthal mode 0 corresponds to the
preferred frequency of the jet. The peak in the azimuthal mode num-
ber direction is approximately at mode 5. A possible combination
of frequencies and azimuthal modes that could be used as an initial
truncation are shown in figure 2. These were selected to try and cap-
ture the maximum energy ridge shown in figure 1. As an initial step,
only the dominant eigenfunction will be necessary in the inhomoge-
neous direction. This corresponds to settingl =n=p=¢g=r=1
in equation (19). This is justified because the dominant eigenvalue
is significantly larger than the next smallest eigenvalue and in fact,
typically contains 50 percent or more of the energy. All of the higher
azimuthal modes exhibit this same dominance of the first eigenvalue
(v. Glauser and George 1987). This particular truncation will result
in a set of 18 complex or 36 real, ordinary differential equations.
The integrations needed to obtain the coefficient matrices in
the truncated version of equation (19) can be obtained using the
trapezoidal rule. A fourth order Runge Kutta scheme could then
be used to integrate the truncated version of equation (19) with the
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necessary boundary conditions. As a first step in the selection of the
boundary conditions, we can argue that at z = 0 the value of our

coefficient a is zero, since the fluctuations are small at this position.

7 Conclusions

The dynamical equations have been derived for the spatially evolving
random coefficients in the axisymmetric jet shear layer. An initial
truncation has been proposed which would involve a system of 36
ODEs. Instead of eliminating the mean flow terms from the system
of ODEs as was done by Glauser et al (1989), here we propose to
solve for the mean quantities, U, and U,, simultaneously with the
system of ODEs. Hence, the resulting ODEs do not exhibit the cubic
character as described by Aubry et al (1988) and Glauser et al (1989).
An interesting extension of this work would be to write the
random coefficients as a function of time and the streamwise direction
(i.e.,a = a(z,t)). This would result in a system of partial differential
equations in z and ¢. This type of an approach would allow for the
temporal and spatial problems to be studied simultaneously.

ACKNOWLEDGMENTS

The authors would like to thank Professors S.P. Lin, W.R.C.
Philips and C.R. Doering from the Institute for Nonlinear Studies at
Clarkson for their many helpful discussions.

REFERENCES

Aubry, N., Holmes, P., Lumley, J.L. and Stone, E. (1988) The Dy-
namics of Coherent Structures in the Wall Region of a Turbulent
Boundary Layer, JFM vol. 192, pp.115-173.

Bartuccelli, M., Constantin, P., Doering, C.R., Gibbon, J.D., and
Gisselfalt, M. (1989), Hard Turbulence in a Finite Dimensional Dy-
namical System?, Physics Letters A-Nonlinear Science

13



Figure 1: Dominant eigenvalue obtained from the application of the

POD in the jet shear laver at 3 diameters downstream.

Figure 2: Possible combination of frequencies and azimuthal modes
that could be used as an initial truncation.
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